Project description:Arsenic-contaminated areas of Sanganer, Jaipur, Rajasthan, India were surveyed for the presence of metal resistant bacteria contaminated with textile effluent. Samples were collected from soil receiving regular effluent from the textile industries located at Sanganer area. The properties like pH, electrical conductivity, organic carbon, organic matter, exchangeable calcium, water holding capacity and metals like arsenic, iron, magnesium, lead and zinc were estimated in the contaminated soil. In total, nine bacterial strains were isolated which exhibited minimum inhibitory concentration (MIC) of arsenic ranging between 23.09 and 69.2mM. Four out of nine arsenic contaminated soil samples exhibited the presence of arsenite hyper-tolerant bacteria. Four high arsenite tolerant bacteria were characterized by 16S rDNA gene sequencing which revealed their similarity to Microbacterium paraoxydans strain 3109, Microbacterium paraoxydans strain CF36, Microbacterium sp. CQ0110Y, Microbacterium sp. GE1017. The above results were confirmed as per Bergey's Manual of Determinative Bacteriology. All the four Microbacterium strains were found to be resistant to 100μg/ml concentration of cobalt, nickel, zinc, chromium selenium and stannous and also exhibited variable sensitivity to mercury, cadmium, lead and antimony. These results indicate that the arsenic polluted soil harbors arsenite hyper-tolerant bacteria like Microbacterium which might play a role in bioremediation of the soil.
Project description:Salix integra Thunb., a fast-growing woody plant species, has been used for phytoremediation in recent years. However, little knowledge is available regarding indigenous soil microbial communities associated with the S. integra phytoextraction process. In this study, we used an Illumina MiSeq platform to explore the indigenous microbial composition after planting S. integra at different lead (Pb) contamination levels: no Pb, low Pb treatment (Pb 500 mg kg-1), and high Pb treatment (Pb 1500 mg kg-1). At the same time, the soil properties and their relationship with the bacterial communities were analyzed. The results showed that Pb concentration was highest in the root reaching at 3159.92 ± 138.98 mg kg-1 under the high Pb treatment. Planting S. integra decreased the total Pb concentration by 84.61 and 29.24 mg kg-1, and increased the acid-soluble Pb proportion by 1.0 and 0.75% in the rhizosphere and bulk soil under the low Pb treatment compared with unplanted soil, respectively. However, it occurred only in the rhizosphere soil under the high Pb treatment. The bacterial community structure and microbial metabolism were related to Pb contamination levels and planting of S. integra, while the bacterial diversity was only affected by Pb contamination levels. The dominant microbial species were similar, but their relative abundance shifted in different treatments. Most of the specific bacterial assemblages whose relative abundances were promoted by root activity and/or Pb contamination were suitable for use in plant-microbial combination remediation, especially many genera coming from Proteobacteria. Redundancy analysis (RDA) showed available nitrogen and pH having a significant effect on the bacteria relating to phytoremediation. The results indicated that indigenous bacteria have great potential in the application of combined S. integra-microbe remediation of lead-contaminated soil by adjusting soil properties.
Project description:ObjectiveTo summarize the evidence on the effectiveness of soil remediation to prevent or reduce lead exposure.MethodsWe systematically searched MEDLINE, the Agricultural & Environmental Science Database, Web of Science, and Scopus from 1980 to February 15, 2021. We also performed reference list checking, hand-searched websites, and contacted experts. Eligible studies evaluated the effect of soil remediation to prevent or reduce lead exposure in humans of any age. We screened all records dually; one investigator performed the data extraction; a second checked for completeness and accuracy. Two investigators independently rated the risk of bias of included studies and graded the certainty of evidence. We synthesized findings narratively.ResultsWe identified 6614 potentially relevant publications, all focused on children, of which five studies (six records) fulfilled our prespecified inclusion criteria. The number of evaluated participants ranged from 31 to 1425, with follow-up periods of 11 months to one year. The primary soil remediation method was the replacement of the upper layer with clean soil. Outcomes were limited to blood lead levels (BLL), dust lead levels, and soil lead levels. The largest study, a controlled before- after study (n = 1425) reported favorable effects of soil remediation compared to no intervention. This finding was consistent with results from two cross-sectional studies and one uncontrolled before-after study. One year post-remediation, the mean reduction in BLL was 2.1 μg/dL (p < 0.0001) greater in the intervention group than in the control group. Two randomized controlled trials with a total of 511 participants showed no statistically significant incremental effect of soil remediation when combined with paint and/or dust abatement. The certainty of evidence for all outcomes was low.ConclusionSoil remediation appears to reduce BLL in children when used as a single intervention. The incremental benefit of soil remediation when part of other interventions is limited.
Project description:Soil remediation agents (SRAs) such as biochar and hydroxyapatite (HAP) have shown a promising prospect in in situ soil remediation programs and safe crop production. However, the effects of SRAs on soil microbial communities still remain unclear, particularly under field conditions. Here, a field case study was conducted to compare the effects of biochar and HAP on soil bacterial communities in a slightly Cd-contaminated farmland grown with sweet sorghum of different planting densities. We found that both biochar and HAP decreased the diversity and richness of soil bacteria, but they differently altered bacterial community structure. Biochar decreased Chao1 (-7.3%), Observed_species (-8.6%), and Shannon indexes (-1.3%), and HAP caused Shannon (-2.0%) and Simpson indexes (-0.1%) to decline. The relative abundance (RA) of some specific taxa and marker species was differently changed by biochar and HAP. Overall, sweet sorghum cultivation did not significantly alter soil bacterial diversity and richness but caused changes in the RA of some taxa. Some significant correlations were observed between soil properties and bacterial abundance. In conclusion, soil remediation with biochar and HAP caused alterations in soil bacterial communities. Our findings help to understand the ecological impacts of SRAs in soil remediation programs.
Project description:Remediation prioritization frequently falls short of systematically evaluating the underlying ecological value of different sites. This study presents a novel approach to delineating sites that are both contaminated by any of eight heavy metals and have high habitat value to high-priority species. The conservation priority of each planning site herein was based on the projected distributions of eight protected bird species, simulated using 900 outputs of species distribution models (SDMs) and the subsequent application of a systematic conservation tool. The distributions of heavy metal concentrations were generated using a geostatistical joint-simulation approach. The uncertainties in the heavy metal distributions were quantified in terms of variability among 1000 realization sets. Finally, a novel remediation decision-making approach was presented for delineating contaminated sites in need of remediation based on the spatial uncertainties of multiple realizations and the priorities of conservation areas. The results thus obtained demonstrate that up to 42% of areas of high conservation priority are also contaminated by one or more of the heavy metal contaminants of interest. Moreover, as the proportion of the land for proposed remediated increased, the projected area of the pollution-free habitat also increased. Overall uncertainty, in terms of the false positive contamination rate, also increased. These results indicate that the proposed decision-making approach successfully accounted for the intrinsic trade-offs among a high number of pollution-free habitats, low false positive rates and robustness of expected decision outcomes.
Project description:In soil, polycyclic aromatic hydrocarbons (PAHs) are tightly bound to organic components, but surfactants can effectively transform them from a solid to a liquid phase. In this study, the biosurfactant rhamnolipid (RL) was selected as the eluent; shaking elution in a thermostatic oscillator improved the elution rate of pyrene, and the effects of RL concentration, temperature, and elution time on the elution effect were compared. After four repeated washings, the maximum elution rate was 75.6% at a rhamnolipid concentration of 20 g/L and a temperature of 45 °C. We found that 38 μm Zero-Valent Iron (ZVI) had a higher primary reaction rate (0.042 h-1), with a degradation rate of 94.5% when 3 g/L ZVI was added to 21 mM Na2S2O8 at 60 °C. Finally, electron paramagnetic resonance (EPR) detected DMPO-OH and DMPO-SO4 signals, which played a major role in the degradation of pyrene. Overall, these results show that the combination of rhamnolipid elution and persulfate oxidation system effectively remediated pyrene-contaminated soil and provides some implications for the combined remediation with biosurfactants and chemical oxidation.
Project description:Soil contamination by heavy metals constitutes an important environmental problem, whereas field applicability of existing remediation technologies has encountered numerous obstacles, such as long operation time, high chemical cost, large energy consumption, secondary pollution, and soil degradation. Here we report the design and demonstration of a remediation method based on a concept of asymmetrical alternating current electrochemistry that achieves high degrees of contaminant removal for different heavy metals (copper, lead, cadmium) at different initial concentrations (from 100 to 10,000 ppm), all reaching corresponding regulation levels for residential scenario after rational treatment time (from 30 min to 6 h). No excessive nutrient loss in treated soil is observed and no secondary toxic product is produced. Long-term experiment and plant assay show the high sustainability of the method and its feasibility for agricultural use.
Project description:This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg(-1) glucose; 80-90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg(-1)·d(-1) (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.
Project description:Unfortunately, many property owners in southeastern Mexico do not trust environmental authorities, and the de facto method they use to evaluate the progress in environmental remediation projects is soil smell. This criterion was evaluated to determine if it was reliable to assess soil fertility and toxicity. Three soils (Fluvisol, Gleysol, and Arenosol), were contaminated with 2% medium or heavy crude oil (30.2, 17.1°API, respectively), and treated for 18 months to simulate bioremediation or natural attenuation. Every two months, field capacity, water repellency, hydrocarbon concentration, acute toxicity and soil odor were measured. Odor was measured in controlled conditions with a group of unexperienced panelists. During remediation, the Fluvisol and Gleysol were perceived to have an odor intensity between slight to low, and were considered acceptable. Meanwhile, in the Arenosol, the odor intensity was between low to medium and was considered unacceptable. After treatment, the hydrocarbon concentration was reduced to low levels, very near Mexican norm, and all the soils, including the Arenosol, were perceived to have an intensity between neutral to slightly agreeable, were considered acceptable, and no toxicity was observed in the earthworm bioassay (no false positives). However, in various soil samples from the Fluvisol and Arenosol, important risks were present with respect to field capacity and water repellency. Due to these observations, even though soil smell may be a trustworthy guide to soil toxicity, it does not ensure that the remediated soil's fertility has been restored.
Project description:The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB) in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1) was used at a given mass ratio of solution to soil (20:1) to extract NB contaminated soil (47.3 mg kg-1), resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6%) with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•-, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.