Project description:Kerr resonators support novel nonlinear wave phenomena including technologically important optical solitons. Fiber Kerr resonator solitons enable wavelength and repetition-rate versatile femtosecond-pulse and frequency-comb generation. However, key performance parameters, such as pulse duration, lag behind those from traditional mode-locked laser-based sources. Here we present new pulse generation in dispersion-managed Kerr resonators based on stretched-pulse solitons, which support the shortest pulses to date from a fiber Kerr resonator. In contrast to established Kerr resonator solitons, stretched-pulse solitons feature Gaussian temporal profiles that stretch and compress each round trip. Experimental results are in excellent agreement with numerical simulations. The dependence on dispersion and drive power are detailed theoretically and experimentally and design guidelines are presented for optimizing performance. Kerr resonator stretched-pulse solitons represent a new stable nonlinear waveform and a promising technique for femtosecond pulse generation.
Project description:The family Tetranychidae (spider mites) currently comprises 1,275 species and represents one of the most important agricultural pest families among the Acari with approximately one hundred pest species, ten of which considered major pests. The dataset presented in this document includes all the identified spider mites composing the Jean Gutierrez Collection hosted at the CBGP (Montferrier-sur-Lez, France), gathered from 1963 to 1999 during his career at the Institut de Recherche pour le Développement (IRD). It consists of 5,262 specimens corresponding to 1,564 occurrences (combination species/host plant/date/location) of 175 species. Most specimens were collected in Madagascar and other islands of the Western Indian Ocean, New Caledonia and other islands of the South Pacific and Papuasia. The dataset constitutes today the most important one available on Tetranychidae worldwide.
Project description:Microresonator-based soliton frequency combs, microcombs, have recently emerged to offer low-noise, photonic-chip sources for applications, spanning from timekeeping to optical-frequency synthesis and ranging. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency combs important to directly probe atoms and molecules, especially in trace gas detection, multiphoton light-atom interactions, and spectroscopy in the extreme ultraviolet. Here, we explore direct microcomb atomic spectroscopy, using a cascaded, two-photon 1529-nm atomic transition in a rubidium micromachined cell. Fine and simultaneous repetition rate and carrier-envelope offset frequency control of the soliton enables direct sub-Doppler and hyperfine spectroscopy. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations at the kilohertz level over a few seconds and <1-MHz day-to-day accuracy. Our work demonstrates direct atomic spectroscopy with Kerr microcombs and provides an atomic-stabilized microcomb laser source, operating across the telecom band for sensing, dimensional metrology, and communication.
Project description:Broadband and low-noise microresonator frequency combs (microcombs) are critical for deployable optical frequency measurements. Here we expand the bandwidth of a microcomb far beyond its anomalous dispersion region on both sides of its spectrum through spectral translation mediated by mixing of a dissipative Kerr soliton and a secondary pump. We introduce the concept of synthetic dispersion to qualitatively capture the system's key physical behavior, in which the second pump enables spectral translation through four-wave mixing Bragg scattering. Experimentally, we pump a silicon nitride microring at 1063 nm and 1557 nm to enable soliton spectral translation, resulting in a total bandwidth of 1.6 octaves (137-407 THz). We examine the comb's low-noise characteristics, through heterodyne beat note measurements across its spectrum, measurements of the comb tooth spacing in its primary and spectrally translated portions, and their relative noise. These ultra-broadband microcombs provide new opportunities for optical frequency synthesis, optical atomic clocks, and reaching previously unattainable wavelengths.
Project description:Optical frequency combs have the potential to revolutionize terabit communications1. Generation of Kerr combs in nonlinear microresonators2 represents a particularly promising option3 enabling line spacings of tens of GHz. However, such combs may exhibit strong phase noise4-6, which has made high-speed data transmission impossible up to now. Here we demonstrate that systematic adjustment of pump conditions for low phase noise4,7-9 enables coherent data transmission with advanced modulation formats that pose stringent requirements on the spectral purity of the comb. In a first experiment, we encode a data stream of 392 Gbit/s on a Kerr comb using quadrature phase shift keying (QPSK) and 16-state quadrature amplitude modulation (16QAM). A second experiment demonstrates feedback-stabilization of the comb and transmission of a 1.44 Tbit/s data stream over up to 300 km. The results show that Kerr combs meet the highly demanding requirements of coherent communications and thus offer an attractive solution towards chip-scale terabit/s transceivers.