Project description:PurposeSegmenting the organs from computed tomography (CT) images is crucial to early diagnosis and treatment. Pancreas segmentation is especially challenging because the pancreas has a small volume and a large variation in shape.MethodsTo mitigate this issue, an attention-guided duplex adversarial U-Net (ADAU-Net) for pancreas segmentation is proposed in this work. First, two adversarial networks are integrated into the baseline U-Net to ensure the obtained prediction maps resemble the ground truths. Then, attention blocks are applied to preserve much contextual information for segmentation. The implementation of the proposed ADAU-Net consists of two steps: 1) backbone segmentor selection scheme is introduced to select an optimal backbone segmentor from three two-dimensional segmentation model variants based on a conventional U-Net and 2) attention blocks are integrated into the backbone segmentor at several locations to enhance the interdependency among pixels for a better segmentation performance, and the optimal structure is selected as a final version.ResultsThe experimental results on the National Institutes of Health Pancreas-CT dataset show that our proposed ADAU-Net outperforms the baseline segmentation network by 6.39% in dice similarity coefficient and obtains a competitive performance compared with the-state-of-art methods for pancreas segmentation.ConclusionThe ADAU-Net achieves satisfactory segmentation results on the public pancreas dataset, indicating that the proposed model can segment pancreas outlines from CT images accurately.
Project description:BackgroundAutomatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based network to detect HCC from dynamic CT images.MethodsDynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and F1-score were used to measure performance of the HFS-Net model.ResultsThe 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2-3, 3-5 cm and > 5 cm were 72.7%, 92.9%, 94.2% and 100% per patient, respectively.ConclusionsThe HFS-Net model achieved good performance in the detection and segmentation of HCC from dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.
Project description:BackgroundPulmonary segments are valuable because they can provide more precise localization and intricate details of lung cancer than lung lobes. With advances in precision therapy, there is an increasing demand for the identification and visualization of pulmonary segments in computed tomography (CT) images to aid in the precise treatment of lung cancer. This study aimed to integrate multiple deep-learning models to accurately segment pulmonary segments in CT images using a bronchial tree (BT)-based approach.MethodsThe proposed segmentation method for pulmonary segments using the BT-based approach comprised the following five essential steps: (I) segmentation of the lung using a U-Net (R231) (public access) model; (II) segmentation of the lobes using a V-Net (self-developed) model; (III) segmentation of the airway using a combination of a differential geometric approach method and a BronchiNet (public access) model; (IV) labeling of the BT branches based on anatomical position; and (V) segmentation of the pulmonary segments based on the distance of each voxel to the labeled BT branches. This five-step process was applied to 14 high-resolution breath-hold CT images and compared against manual segmentations for evaluation.ResultsFor the lung segmentation, the lung mask had a mean dice similarity coefficient (DSC) of 0.98±0.03. For the lobe segmentation, the V-Net model had a mean DSC of 0.94±0.06. For the airway segmentation, the average total length of the segmented airway trees per image scan was 1,902.8±502.1 mm, and the average number of the maximum airway tree generations was 8.5±1.3. For the segmentation of the pulmonary segments, the proposed method had a DSC of 0.73±0.11 and a mean surface distance of 6.1±2.9 mm.ConclusionsThis study demonstrated the feasibility of combining multiple deep-learning models for the auxiliary segmentation of pulmonary segments on CT images using a BT-based approach. The results highlighted the potential of the BT-based method for the semi-automatic segmentation of the pulmonary segment.
Project description:Background and purposeRadiation dose to the cardio-pulmonary system is critical for radiotherapy-induced mortality in non-small cell lung cancer. Our goal was to automatically segment substructures of the cardio-pulmonary system for use in outcomes analyses for thoracic cancers. We built and validated a multi-label Deep Learning Segmentation (DLS) model for accurate auto-segmentation of twelve cardio-pulmonary substructures.Materials and methodsThe DLS model utilized a convolutional neural network for segmenting substructures from 217 thoracic radiotherapy Computed Tomography (CT) scans. The model was built in the presence of variable image characteristics such as the absence/presence of contrast. We quantitatively evaluated the final model against expert contours for a hold-out dataset of 24 CT scans using Dice Similarity Coefficient (DSC), 95th Percentile of Hausdorff Distance and Dose-volume Histograms (DVH). DLS contours of an additional 25 scans were qualitatively evaluated by a radiation oncologist to determine their clinical acceptability.ResultsThe DLS model reduced segmentation time per patient from about one hour to 10 s. Quantitatively, the highest accuracy was observed for the Heart (median DSC = (0.96 (0.95-0.97)). The median DSC for the remaining structures was between 0.81 and 0.93. No statistically significant difference was found between DVH metrics of the auto-generated and manual contours (p-value ⩾ 0.69). The expert judged that, on average, 85% of contours were qualitatively equivalent to state-of-the-art manual contouring.ConclusionThe cardio-pulmonary DLS model performed well both quantitatively and qualitatively for all structures. This model has been incorporated into an open-source tool for the community to use for treatment planning and clinical outcomes analysis.
Project description:BackgroundAccurate segmentation of pancreatic cancer tumors using positron emission tomography/computed tomography (PET/CT) multimodal images is crucial for clinical diagnosis and prognosis evaluation. However, deep learning methods for automated medical image segmentation require a substantial amount of manually labeled data, making it time-consuming and labor-intensive. Moreover, addition or simple stitching of multimodal images leads to redundant information, failing to fully exploit the complementary information of multimodal images. Therefore, we developed a semisupervised multimodal network that leverages limited labeled samples and introduces a cross-fusion and mutual information minimization (MIM) strategy for PET/CT 3D segmentation of pancreatic tumors.MethodsOur approach combined a cross multimodal fusion (CMF) module with a cross-attention mechanism. The complementary multimodal features were fused to form a multifeature set to enhance the effectiveness of feature extraction while preserving specific features of each modal image. In addition, we designed an MIM module to mitigate redundant high-level modal information and compute the latent loss of PET and CT. Finally, our method employed the uncertainty-aware mean teacher semi-supervised framework to segment regions of interest from PET/CT images using a small amount of labeled data and a large amount of unlabeled data.ResultsWe evaluated our combined MIM and CMF semisupervised segmentation network (MIM-CMFNet) on a private dataset of pancreatic cancer, yielding an average Dice coefficient of 73.14%, an average Jaccard index score of 60.56%, and an average 95% Hausdorff distance (95HD) of 6.30 mm. In addition, to verify the broad applicability of our method, we used a public dataset of head and neck cancer, yielding an average Dice coefficient of 68.71%, an average Jaccard index score of 57.72%, and an average 95HD of 7.88 mm.ConclusionsThe experimental results demonstrate the superiority of our MIM-CMFNet over existing semisupervised techniques. Our approach can achieve a performance similar to that of fully supervised segmentation methods while significantly reducing the data annotation cost by 80%, suggesting it is highly practicable for clinical application.
Project description:The larynx, or the voice-box, is a common site of occurrence of Head and Neck cancers. Yet, automated segmentation of the larynx has been receiving very little attention. Segmentation of organs is an essential step in cancer treatment-planning. Computed Tomography scans are routinely used to assess the extent of tumor spread in the Head and Neck as they are fast to acquire and tolerant to some movement. This paper reviews various automated detection and segmentation methods used for the larynx on Computed Tomography images. Image registration and deep learning approaches to segmenting the laryngeal anatomy are compared, highlighting their strengths and shortcomings. A list of available annotated laryngeal computed tomography datasets is compiled for encouraging further research. Commercial software currently available for larynx contouring are briefed in our work. We conclude that the lack of standardisation on larynx boundaries and the complexity of the relatively small structure makes automated segmentation of the larynx on computed tomography images a challenge. Reliable computer aided intervention in the contouring and segmentation process will help clinicians easily verify their findings and look for oversight in diagnosis. This review is useful for research that works with artificial intelligence in Head and Neck cancer, specifically that deals with the segmentation of laryngeal anatomy.Supplementary informationThe online version contains supplementary material available at 10.1007/s13534-022-00221-3.
Project description:BackgroundIdiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and usually fatal lung disease of unknown reasons, generally affecting the elderly population. Early diagnosis of IPF is crucial for triaging patients' treatment planning into anti-fibrotic treatment or treatments for other causes of pulmonary fibrosis. However, current IPF diagnosis workflow is complicated and time-consuming, which involves collaborative efforts from radiologists, pathologists, and clinicians and it is largely subject to inter-observer variability.PurposeThe purpose of this work is to develop a deep learning-based automated system that can diagnose subjects with IPF among subjects with interstitial lung disease (ILD) using an axial chest computed tomography (CT) scan. This work can potentially enable timely diagnosis decisions and reduce inter-observer variability.MethodsOur dataset contains CT scans from 349 IPF patients and 529 non-IPF ILD patients. We used 80% of the dataset for training and validation purposes and 20% as the holdout test set. We proposed a two-stage model: at stage one, we built a multi-scale, domain knowledge-guided attention model (MSGA) that encouraged the model to focus on specific areas of interest to enhance model explainability, including both high- and medium-resolution attentions; at stage two, we collected the output from MSGA and constructed a random forest (RF) classifier for patient-level diagnosis, to further boost model accuracy. RF classifier is utilized as a final decision stage since it is interpretable, computationally fast, and can handle correlated variables. Model utility was examined by (1) accuracy, represented by the area under the receiver operating characteristic curve (AUC) with standard deviation (SD), and (2) explainability, illustrated by the visual examination of the estimated attention maps which showed the important areas for model diagnostics.ResultsDuring the training and validation stage, we observe that when we provide no guidance from domain knowledge, the IPF diagnosis model reaches acceptable performance (AUC±SD = 0.93±0.07), but lacks explainability; when including only guided high- or medium-resolution attention, the learned attention maps are not satisfactory; when including both high- and medium-resolution attention, under certain hyperparameter settings, the model reaches the highest AUC among all experiments (AUC±SD = 0.99±0.01) and the estimated attention maps concentrate on the regions of interests for this task. Three best-performing hyperparameter selections according to MSGA were applied to the holdout test set and reached comparable model performance to that of the validation set.ConclusionsOur results suggest that, for a task with only scan-level labels available, MSGA+RF can utilize the population-level domain knowledge to guide the training of the network, which increases both model accuracy and explainability.
Project description:Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.
Project description:AimThe main objective of this work is to propose an efficient segmentation model for accurate and robust lung segmentation from computed tomography (CT) images, even when the lung contains abnormalities such as juxtapleural nodules, cavities, and consolidation.MethodologyA novel deep learning-based segmentation model, pyramid-dilated dense U-Net (PDD-U-Net), is proposed to directly segment lung regions from the whole CT image. The model is integrated with pyramid-dilated convolution blocks to capture and preserve multi-resolution spatial features effectively. In addition, shallow and deeper stream features are embedded in the nested U-Net structure at the decoder side to enhance the segmented output. The effect of three loss functions is investigated in this paper, as the medical image analysis method requires precise boundaries. The proposed PDD-U-Net model with shape-aware loss function is tested on the lung CT segmentation challenge (LCTSC) dataset with standard lung CT images and the lung image database consortium-image database resource initiative (LIDC-IDRI) dataset containing both typical and pathological lung CT images.ResultsThe performance of the proposed method is evaluated using Intersection over Union, dice coefficient, precision, recall, and average Hausdorff distance metrics. Segmentation results showed that the proposed PDD-U-Net model outperformed other segmentation methods and achieved a 0.983 dice coefficient for the LIDC-IDRI dataset and a 0.994 dice coefficient for the LCTSC dataset.ConclusionsThe proposed PDD-U-Net model with shape-aware loss function is an effective and accurate method for lung segmentation from CT images, even in the presence of abnormalities such as cavities, consolidation, and nodules. The model's integration of pyramid-dilated convolution blocks and nested U-Net structure at the decoder side, along with shape-aware loss function, contributed to its high segmentation accuracy. This method could have significant implications for the computer-aided diagnosis system, allowing for quick and accurate analysis of lung regions.
Project description:PurposeThe development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT).Methods and materialsMagnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism.ResultsBounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, -0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, -0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, -0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, -0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, -0.3 to 1.2 mm), and 0.2 ± 0.3 mm (range, -0.2 to 1.2 mm) for the S-I, L-R, and A-P axes, respectively. The CT-SIM and synCT derived margins were <0.3 mm different.ConclusionDRRs generated by synCT were in close agreement with CT-SIM. Planar and volumetric image registrations to synCT-derived targets were comparable with CT for phantom and patients. This validation is the next step toward MR-only planning for the brain.