Project description:The passion fruit powder blended rice flour based extrudate was developed and investigated in terms of physicochemical and phytochemical properties. The extrusion process was performed using a twin screw extruder and optimized using rotatable central composite design followed by response surface methodology. The effect of process parameters such as temperature (80-150 °C), screw speed (200-400 rpm), moisture content (20-30%) and passion fruit powder (0-15%) on product quality was investigated. The optimum extrusion conditions of temperature, screw speed, feed moisture content, and passion fruit powder were 97.50 °C, 250 rpm, 25.20% and 11.25%, respectively. At optimum condition, the predicted values of responses were expansion ratio 8.05, water absorption index 2.77, total phenolic content 129.492 mg GAE/100 g and DPPH scavenging activity 65.79%. A comparison between optimized and control extrudates revealed that thermal, crystallinity and morphological properties of extrudates differed significantly. The comparison was also conducted in terms of FT-IR, SEM-EDS and HPLC analysis. The phytochemical properties showed that β-carotene, cyanidin-3-glucoside, peonidin-3-D-glucoside chloride were higher in control whereas the optimized sample evinced more (±)-α-tocopherol and D-α-tocopherol.
Project description:Jujube (Ziziphus lotus L.) fruit has multiple functional properties and represents an interesting source of bioactive compounds. The purpose of this study was to improve the functionality and the sensory properties of sponge cake enriched with Z. lotus fruit. The polyphenols and flavonoids levels in the sponge cake and its antioxidant potential increased with the addition of 0-10 g of jujube powder/100 g of wheat flour. The crumb color parameters, L* and b*, decreased with the addition of jujube powder, whereas the a* value increased. In the texture analysis, addition of jujube powder resulted in an increase of the hardness and chewiness, but the springiness was reduced. The sensory evaluation showed that supplementation of jujube powder did not manifest any undesirable organoleptic response and showed satisfactory consumer acceptability. Overall, the addition at 5% jujube powder showed the finest sensory properties of the sponge cake.
Project description:To the best of our knowledge, this is the first report in the literature concerning the bioactive properties of faveleira products. This work focuses on the physicochemical evaluation of faveleira oil, as well as it investigates the bioactive properties of faveleira seeds, faveleira oil and the press cake obtained during the oilseed processing. The seeds were cold pressed and the following tests were performed: physicochemical characteristics (acidity, peroxide values, moisture and volatile matter, density and viscosity) and fatty acid profile of faveleira oil; total phenolic and flavonoid content of faveleira seed and press cake; antibacterial activity of seed, oil and press cake; and antioxidant activity (DPPH radical scavenging activity, reducing power assay, total antioxidant capacity, superoxide radical scavenging assay and oxygen radical absorbance capacity) of seed, oil and press cake. Our work demonstrated that the faveleira seed oil has low acidity (0.78 ± 0.03% oleic acid) and peroxide value (1.13 ± 0.12 mEq/1000g), associated with the relevant concentration of linoleic acid (53.56%). It was observed that important phenolics (398.89 ± 6.34 mg EAG/100 g), especially flavonoids (29.81 ± 0.71 mg RE/g) remain in the press cake, which indicates that the by-product of the faveleira oilseed production constitutes a rich residual source of bioactive compounds. No bacterial growth inhibition was detected, but all samples including faveleira seeds, press cake, oil and its fractions have potent antioxidant activities, mainly the press cake, with oxygen radical absorbance capacity of 28.39 ± 4.36 μM TE/g. Our results also show that faveleira oil has potential to be used as edible oil and the press cake should be used to contain the most antioxidants from seed.
Project description:The objective was to modify functional properties of breadfruit flours using twin-screw extrusion and test the physicochemical properties of the extruded flours. Extruded breadfruit flours were produced with twin-screw extrusion using different last barrel temperature (80 °C or 120 °C) and feed moisture content (17% or 30%). These conditions resulted in four extruded flours with different mechanical (specific mechanical energy, SME) and thermal (melt temperature) energies. At temperatures below the gelatinization of the native starch (<70 °C), swelling power was increased in all extruded treatments. Solubility was dramatically increased in high-SME extruded flours at all tested temperatures. Water holding capacity was dramatically increased in the low-SME extruded flours. A two-fold higher cold peak viscosity was obtained for low SME-high temperature extruded flour compared with the other extruded flours. Low SME-low temperature extruded flour still exhibited a hot peak viscosity, which occurred earlier than in native flour. Setback was decreased in all extruded flours, especially in high-SME treatments. The incorporation of extruded flours into soy protein gels did not affect cooking loss, while hardness and springiness decreased with the addition of extruded flours. Overall, extrusion of breadfruit flour altered functional flour properties, including water holding capacity and pasting properties, and modified the texture of soy protein gels.
Project description:Hemp press cake flour (HPCF) is a by-product of hemp oil production rich in proteins, carbohydrates, minerals, vitamins, oleochemicals, and phytochemicals. The purpose of this study was to investigate how the addition of HPCF to bovine and ovine plain yoghurts at concentrations of 0%, 2%, 4%, 6%, 8%, and 10% could change the physicochemical, microbiological, and sensory properties of the yoghurts, focusing on the improvement of quality and antioxidant activity, and the issue of food by-products and their utilisation. The results showed that the addition of HPCF to yoghurts significantly affected their properties, including an increase in pH and decrease in titratable acidity, change in colour to darker, reddish or yellowish hue, and a rise in total polyphenols and antioxidant activity during storage. Yoghurts fortified with 4% and 6% HPCF exhibited the best sensory properties, thus maintaining viable starter counts in the yoghurts during the study period. There were no statistically significant differences between the control yoghurts and the samples with 4% added HPCF in terms of overall sensory score while maintaining viable starter counts during the seven-day storage. These results suggest that the addition of HPCF to yoghurts can improve product quality and create functional products and may have potential in sustainable food waste management.
Project description:In this study, the effects of different soluble proteins, including collagen peptides (CP), soy protein hydrolysate (HSPI), whey protein isolate (WPI), sodium caseinate (SC), and egg white protein (EWP), on the structural and mechanical properties of blends containing soy protein isolate (SPI) and wheat gluten (WG) were investigated using high-moisture extrusion. The addition of CP and HSPI resulted in a more pronounced fibrous structure with increased voids, attributing to their plasticizing effect that enhanced polymer chain mobility and reduced viscosity. WPI, SC, and EWP acted as crosslinking agents, causing early crosslink formation and decreased polymer chain mobility. These structural variations directly influenced the tensile properties of the extrudates, with CP displaying the highest anisotropic index. Moreover, the presence of soluble proteins impacts the permeability of the extrudates. These insights shed light on how soluble proteins can be used to modify the properties of SPI-WG blends, making them suitable for meat analogue production.
Project description:Novel hot pot dipping sauces enriched with pepper seed press cake (PSPC) in five proportions were prepared and evaluated in terms of their physical properties and flavor characteristics. The findings indicated that enriching the sauce increased the content of palmitic and linoleic acids, enhanced storage stability, and improved the rheological behavior and textural properties. The maximum concentration of N-heterocyclic compounds was detected when PSPC was added at 5 g/100 g and 10 g/100 g. A suitable amount of PSPC could improve the mouthfeel and intensify the flavors of umami and saltiness. In comparing sauces with different amounts of PSPC added (0-20 g/100 g), the quality, aroma, and taste were better and overall acceptance was highest when PSPC was added in the range of 5 g/100 g to 10 g/100 g. This study provides a possible application of PSPC for improving the flavor, texture, nutritional quality, and storage stability of hot pot dipping sauce.
Project description:In this study, textured vegetable protein (TVP) based on soy protein isolate, wheat gluten, and corn starch was prepared at a 5:3:2 (w/w) ratio using a low-moisture extrusion process. To evaluate the effects of extrusion parameters, die temperature and screw rotation speed, on the properties of TVP, these two parameters were manipulated at a constant barrel temperature and moisture content. The results indicated that increasing the die temperature increased the expansion ratio while decreasing the density of the extrudates. Simultaneously, increasing the screw rotation speed clearly increased the specific mechanical energy of the TVP. Furthermore, mathematical modelling suggested that the expansion ratio increases exponentially to the die temperature. However, extreme process conditions bring about a decrease in water absorption capacity and expansion ratio, as well as undesirable texture and microstructure. The results suggested that the properties of SPI-based TVP are directly influenced by the extrusion process parameters, screw speed and die temperature.Supplementary informationThe online version contains supplementary material available at 10.1007/s10068-022-01207-8.
Project description:A gelled emulsion ingredient based on high oleic sunflower oil (20%) and an isolated soy protein suspension were used in the elaboration of a cake to avoid the use of ingredients of animal origin. The control product was elaborated with butter and milk. Sugar was used in both types of formulations, but it was partially replaced by maltitol in the reformulated product. Decreases of 25% in energy and 67% in fat supply were achieved, as well as a 36% reduction in the sugar content. The saturated fatty acid amount was 0.57 g/100 g product, in contrast with the 9.45 g/100 g product found in control products. Differences in color were observed both through instrumental and sensory analysis, especially in the crust, with lower values for the Browning index in the reformulated products. The hedonic test, carried out with 44 untrained panelists, showed a good score for general acceptability (6.1 in contrast to 7.2 for control products), and no significant differences from the control were found for flavor.
Project description:Rapeseed is the second most cultivated oilseed after soybean and is mainly used to produce vegetable oil. The by-product rapeseed press cake is rich in high-quality proteins, thus having the possibility of becoming a new plant protein food source. This study aimed to investigate how the precipitation pH affects the protein yield, protein content, and emulsifying properties when industrially cold-pressed rapeseed press cake is used as the starting material. Proteins were extracted under alkaline conditions (pH 10.5) with an extraction coefficient of 52 ± 2% followed by precipitation at various pH (3.0-6.5). The most preferred condition in terms of process efficiency was pH 4.0, which is reflected in the zeta potential results, where the proteins' net charge was 0 at pH 4.2. pH 4.0 also exhibited the highest protein recovery yield (33 ± 0%) and the highest protein concentration (64 ± 1%, dry basis). Proteins precipitated at pH 6.0-6.5 stabilized emulsions with the smallest initial droplet size, although emulsions stabilized by rapeseed protein precipitated at pH 5.0-6.0 showed the highest emulsion stability at 37 °C for 21 days, with a limited layer of free oil. Overall, emulsion stabilized by protein precipitated at pH 5.0 was the most stable formulation, with no layer of free oil after 21 days of incubation.