Project description:Six types of nut-based bars with the addition of edible insect flour were obtained. Flours made from three different insects (Tenebrio molitor L., Acheta domesticus L., Alphitobius diaperinus P.) were used at two different additive levels (15% and 30%) in relation to the weight of the nuts. The addition of insect flour significantly increased protein content and the insoluble fraction of dietary fiber. The largest amount of these compounds was found in bars with 30% cricket flour, 15.51 g/100 g and 6.04 g/100 g, respectively, in comparison to standard bars, 10.78 g/100 g and 3.14 g/100 g, respectively. The greatest consumer acceptance was found in relation to bars with buffalo worm flour. The overall acceptance of these bars was 6.26–6.28 points compared to 6.48 for standard bars. Bars and raw materials were characterized by the high biological value of the protein. Cis linoleic acid dominated among unsaturated fatty acids. The percentage of this compound was in the range of 69.56%, for bars with a 30% addition of buffalo worm flour, to 73.88%, for bars with 15% cricket flour. Instrumental analysis of taste and smell compounds showed the presence of compounds such as 3-methylbutanoic acid, hexanal, and 2,3-pentanedione.
Project description:Background: Ogi from locally available cereals remains a relatively affordable complementary food in West Africa, but has a tendency to spoil due it high moisture content. This study explored effects of garlic and ginger as biopreservatives in ogi flour. Methods: Ogi flour was prepared from sorghum and quality protein maize grains with different concentrations of garlic and ginger powder (2 and 4% w/w) by fermentation technique. These samples were stored for 16 weeks during which the total titratable acidity, pH, proximate composition, mineral content and total antioxidant activities were determined. Results: The proximate compositions of bio-preserved ogi samples were relatively stable throughout storage. The addition of garlic and ginger slightly increased the ash (0.04%), crude protein and mineral contents (mg/ 100g) of the samples. Magnesium (10.85-13.13 and 5.17-9.72); zinc (1.37-1.78 and 7.01-8.50), manganese (1.30-1.71 and 0.45-0.86) and iron (1.53-1.77 and 0.68-2.77) contents increased on addition (of garlic and ginger) to maize ogi and sorghum ogi flours respectively. The free radical scavenging activity; total phenolic and flavonoid contents increased correspondingly with the antioxidants activity. Conclusion: Although not well known to ogi consumer, the bio-preserved ogi flours showed better nutritional values and have potential as a health food.
Project description:Using indica rice flour as the main raw material and adding blueberry residue powder, the indica rice expanded powder (REP) containing blueberry residue was prepared by extrusion and comminution. The effects of extrusion processing on the nutritional components, color difference, antioxidant performance and volatile organic compounds (VOCs) of indica rice expanded powder with or without blueberry residue were compared. The results showed that the contents of fat and total starch decreased significantly after extrusion, while the contents of total dietary fiber increased relatively. Especially, the effect of DPPH and ABTS+ free radical scavenging of the indica rice expanded flour was significantly improved by adding blueberry residue powder. A total of 104 volatile compounds were detected in the indica rice expanded powder with blueberry residue (REPBR) by Electronic Nose and GC-IMS analysis. Meanwhile, 86 volatile organic compounds were successfully identified. In addition, the contents of 16 aldehydes, 17 esters, 10 ketones and 8 alcohols increased significantly. Therefore, adding blueberry residue powder to indica rice flour for extrusion is an efficient and innovative processing method, which can significantly improve its nutritional value, antioxidant performance and flavor substances.
Project description:Mango fruit has a high nutritional value and health benefits due to important components. The present manuscript is a comprehensive update on the composition of mango fruit, including nutritional and phytochemical compounds, and the changes of these during development and postharvest. Mango components can be grouped into macronutrients (carbohydrates, proteins, amino acids, lipids, fatty, and organic acids), micronutrients (vitamins and minerals), and phytochemicals (phenolic, polyphenol, pigments, and volatile constituents). Mango fruit also contains structural carbohydrates such as pectins and cellulose. The major amino acids include lysine, leucine, cysteine, valine, arginine, phenylalanine, and methionine. The lipid composition increases during ripening, particularly the omega-3 and omega-6 fatty acids. The most important pigments of mango fruit include chlorophylls (a and b) and carotenoids. The most important organic acids include malic and citric acids, and they confer the fruit acidity. The volatile constituents are a heterogeneous group with different chemical functions that contribute to the aromatic profile of the fruit. During development and maturity stages occur important biochemical, physiological, and structural changes affecting mainly the nutritional and phytochemical composition, producing softening, and modifying aroma, flavor, and antioxidant capacity. In addition, postharvest handling practices influence total content of carotenoids, phenolic compounds, vitamin C, antioxidant capacity, and organoleptic properties.
Project description:Wild or semi-wild edible greens (chórta) are an integral part of the traditional Greek Mediterranean diet due to their nutritional value, containing various phytonutrients beneficial to human health. Water-based decoctions of chórta are widely consumed in Greek alternative medicine as health promoting agents. This study examined the chemical profile of the decoctions of eight edible plants, Cichorium intybus, C. endivia, C. spinosum, Crepis sancta, Sonchus asper, Carthamus lanatus, Centaurea raphanina, and Amaranthus blitum, by UPLC-ESI-HRMS and HRMS/MS analysis, to determine possibly bioactive constituents. The profiles of the plants from the Asteraceae family are dominated by the presence of phenolic acids and flavonoid derivatives, whereas the A. blitum decoction is rich in triterpene saponins. Interestingly, the Centaurea raphanina decoction was found to be extremely rich in flavanones, particularly in the aglycone pinocembrin. Further phytochemical investigation and fractionation of this extract resulted in the isolation and identification of five compounds: phlorin (1), syringin (2), pinocembrin (3), pinocembroside (4), and pinocembrin-7-O-neohesperidoside (5). The extracts were also tested for their antioxidant and differential cytotoxic activity against tumor cells. C. raphanina was found to be differentially toxic against metastatic tumor cells. In conclusion, we found that Greek edible greens are a rich source of bioactive secondary metabolites and their consumption could contribute to the maintenance of overall health.
Project description:The ultimate health benefits of peanuts and tree nuts partially depend on the effective gastrointestinal delivery of their phytochemicals. The chemical composition and in vitro bioaccessibility of tocopherols, tocotrienols and phenolic compounds from peanuts and seven tree nuts were evaluated by analytical and chemometric methods. Total fat and dietary fiber (g 100 g-1) ranged from 34.2 (Emory oak acorn) to 72.5 (pink pine nut; PPN) and from 1.2 (PPN) to 22.5 (pistachio). Samples were rich in oleic and linoleic acids (56-87 g 100 g-1 oil). Tocopherols and tocotrienols (mg·kg-1) ranged from 48.1 (peanut) to 156.3 (almond) and 0 (almond, pecan) to 22.1 (PPN) and hydrophilic phenolics from 533 (PPN) to 12,896 (Emory oak acorn); flavonoids and condensed tannins (mg CE.100 g-1) ranged from 142 (white pine nut) to 1833 (Emory oak acorn) and 14 (PPN) to 460 (Emory oak acorn). Three principal components explained 90% of the variance associated with the diversity of antioxidant phytochemicals in samples. In vitro bioaccessibility of tocopherols, tocotrienols, hydrophilic phenolics, flavonoids, and condensed tannins ranged from 11-51%, 16-79%, 25-55%, 0-100%, and 0-94%, respectively. Multiple regression analyses revealed a potential influence of dietary fiber, fats and/or unsaturated fatty acids on phytochemical bioaccessibility, in a structure-specific manner.
Project description:The blackberry seed flour was cold-extracted using 50% acetone and examined for its phytochemical composition and health-beneficial properties including in vitro gut microbiota modulatory, free radical scavenging, anti-inflammatory, and antiproliferative capacities. Among identified thirteen components of blackberry seed flour extract through UHPLC-MS analysis, sanguiin H6 was the primary component and followed by ellagic acid and pedunculagin. For health-beneficial properties, the blackberry seed flour extract increased the total number of gut bacteria and shifted the abundance of specific bacterial phylum, family, or genus. The extract had RDSC, ORAC, HOSC, and ABTS•+ scavenging capacities of 362, 304, 2,531, and 267 μmol Trolox equivalents (TE)/g, respectively. In addition, the blackberry seed flour extract showed capacities for anti-inflammation and antiproliferation by suppressing LPS induced IL-1β mRNA expressions in the cultured J774A.1 mouse macrophages and the proliferation of LNCaP prostate cancer cells. The results suggest potential health benefits and further utilization of blackberry seed flour as functional foods.
Project description:Salvia miltiorrhiza seeds (SMS) are the main by-product of the production processing of Radix Salviae Miltiorrhizae. The main purposes of this work are to analyse the nutritional components in SMS, to explore the antioxidant activity of the chemical components in SMS and to evaluate the possibility of SMS as a raw material for functional foods. The contents of crude fibre, total protein, carbohydrates, total phenolics and flavonoids in SMS and the composition and relative content of fatty acids in SMS oil were determined. The results suggested that SMS has high contents of crude fibre (28.68 ± 4.66 g/100 g), total protein (26.65 ± 2.51 g/100 g), total phenolics (6.45 ± 0.55 mg of gallic acid equivalent/g) and total flavonoids (3.28 ± 0.34 mg of rutin equivalent/g), as well as a high level of α-linolenic acid (33.774 ± 4.68%) in their oil. Twenty-two secondary metabolites were identified in SMS residue, and nine compounds were isolated. The IC50 values of the total phenolic content in SMS on an ABTS radical, DPPH radical, superoxide radical and hydroxyl radical were 30.94 ± 3.68 μg/mL, 34.93 ± 4.12 μg/mL, 150.87 ± 17.64 μg/mL and 230.19 ± 24.47 μg/mL, respectively. The results indicate that SMS contain many nutrients and have high utilization value as a promising functional food.
Project description:Bacteria and fungi in shared environments compete with one another for common substrates, and this competition typically involves microbially-produced small molecules. An investigation of one shared environmental niche, the carton material of the Formosan subterranean termite Coptotermes formosanus, identified the participants on one of these molecular exchanges. Molecular characterization of several termite-associated actinobacteria strains identified eleven known antimicrobial metabolites that may aid in protecting the C. formosanus colony from pathogenic fungal infections. One particular actinobacterial-derived small molecule, bafilomycin C1, elicited a strong chemical response from Trichoderma harzianum, a common soil saprophyte. Upon purification and structure elucidation, three major fungal metabolites were identified, t22-azaphilone, cryptenol, and homodimericin A. Both t22-azaphilone and homodimericin A are strongly upregulated, 123- and 38-fold, respectively, when exposed to bafilomycin C1, suggesting each play a role in defending T. harzianum from the toxic effect of bafilomycin C1.
Project description:Picking vegetables is, along with salting and drying, one of the oldest ways to preserve food in the world. This is the process of decomposition of simple sugars into lactic acid with the participation of lactic bacteria. The aim of the study was to obtain powders from fermented red beet juice with the highest possible amount of lactic acid bacteria (LAB) and active ingredients. For the analysis, juices were squeezed from the vegetables and two types of fermentation were used: a spontaneous fermentation and a dedicated one. After inoculation, samples were taken for analysis on a daily basis. Extract, pH, total acidity, pigments, and color were measured. In addition, microbiological tests were also carried out. The juices from the fifth day of fermentation was also spray dried, to obtain fermented beetroot powder. Juices from 3-5th day were characterized by a high content of LAB and betanin, had also a low pH, which proves that the lactic fermentation is working properly. The exception was the juice from spontaneous fermentation. According to the observations, the fermentation process did not run properly, and further analysis is needed. The powders were stable; however, results obtained from the pigment content and the LAB content are not satisfactory and require further analysis.