Project description:The ordered mesoporous silica MCM-48 with cubic Ia3d structure was synthesized using the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) as a template agent and tetraethylorthosilicate (TEOS) as a silica source. The obtained material was first functionalized with (3-glycidyloxypropyl)trimethoxysilane (KH560); further, two types of amination reagents were used: ethylene diamine (N2) and diethylene triamine (N3). The modified amino-functionalized materials were characterized by powder X-ray diffraction (XRD) at low angles, infrared spectroscopy (FT-IR) and nitrogen adsorption-desorption experiments at 77 K. Characterization from a structural point of view reveals that the ordered MCM-48 mesoporous silica has a highly ordered structure and a large surface area (1466.059 m2/g) and pore volume (0.802 cm3/g). The amino-functionalized MCM-48 molecular sieves were tested for CO2 adsorption-desorption properties at different temperatures using thermal program desorption (TPD). Promising results for CO2 adsorption capacities were achieved for MCM-48 sil KH560-N3 at 30 °C. At 30 °C, the MCM-48 sil KH560-N3 sample has an adsorption capacity of 3.17 mmol CO2/g SiO2, and an efficiency of amino groups of 0.58 mmol CO2/mmolNH2. After nine adsorption-desorption cycles, the results suggest that the performance of the MCM-48 sil KH N2 and MCM-48 sil KH N3 adsorbents is relatively stable, presenting a low decrease in the adsorption capacity. The results reported in this paper for the investigated amino-functionalized molecular sieves as absorbents for CO2 can be considered as promising.
Project description:The search for alternative ways to give a second life to materials paved the way for detailed investigation into three silica-polyethylenimine (Si-PEI) materials for the purpose of CO2 adsorption in carbon capture and storage. A solvent extraction procedure was investigated to recover degraded PEIs and silica, and concomitantly, pyrolysis was evaluated to obtain valuable chemicals such as alkylated pyrazines. An array of thermal (TGA, Py-GC-MS), mechanical (rheology), and spectroscopical (ATR-FTIR, 1H-13C-NMR) methods were applied to PEIs extracted with methanol to determine the relevant physico-chemical features of these polymers when subjected to degradation after use in CO2 capture. Proxies of degradation associated with the plausible formation of urea/carbamate moieties were revealed by Py-GC-MS, NMR, and ATR-FTIR. The yield of alkylpyrazines estimated by Py-GC-MS highlighted the potential of exhausted PEIs as possibly valuable materials in other applications.
Project description:High volume blast furnace slag (BFS) resulting from iron-making activities has long been considered a burden for the environment. Despite considerable research efforts, attempts to convert BFS into high value-added products for environmental remediation are still challenging. In this study, calcium-magnesium-aluminium layered double hydroxides (CaMgAl-LDHs) and ordered mesoporous silica material (MCM-41) sorbents were simultaneously synthesized from BFS, and their CO2 adsorption performance was evaluated. Calcium (Ca), magnesium (Mg) and aluminium (Al) were selectively extracted from BFS using hydrochloric acid. Leaching conditions consisting of 2 mol L-1 acid concentration, 100 °C leaching temperature, 90 min leaching time and a solid-to-liquid ratio of 40 g L-1 achieved a high leaching ratio of Ca, Mg and Al at 88.08%, 88.59% and 82.27%, respectively. The silica-rich residue (SiO2 > 98.6 wt%) generated from the leaching process could be used as a precursor for MCM-41 preparation. Chemical composition, surface chemical bonds, morphology and textural properties of the as-synthesized CaMgAl-LDHs and MCM-41 sorbents were determined. Both the CaMgAl-LDHs and MCM-41 sorbents were found to be thermally stable and exhibited comparable adsorption uptake and rates over 20 CO2 adsorption/desorption cycles. This work demonstrated that a total solution for the utilisation of BFS can be achieved and the resulting valuable products, i.e. CaMgAl-LDHs and MCM-41 are promising sorbents for CO2 capture.
Project description:Adsorption methods for CO2 capture are characterized by high selectivity and low energy consumption. Therefore, the engineering of solid supports for efficient CO2 adsorption attracts research attention. Modification of mesoporous silica materials with tailor-made organic molecules can greatly improve silica's performance in CO2 capture and separation. In that context, a new derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, possessing an electron-rich condensed aromatic structure and also known for its anti-oxidative properties, was synthesized and applied as a modifying agent of 2D SBA-15, 3D SBA-16, and KIT-6 silicates. The physicochemical properties of the initial and modified materials were studied using nitrogen physisorption and temperature-gravimetric analysis. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The three modified materials displayed a higher capacity for CO2 adsorption than the initial ones. Among the studied sorbents, the modified mesoporous SBA-15 silica showed the highest adsorption capacity for CO2 (3.9 mmol/g). In the presence of 1 vol.% water vapor, the adsorption capacities of the modified materials were enhanced. Total CO2 desorption from the modified materials was achieved at 80 °C. The obtained silica materials displayed stable performance in five CO2 adsorption/desorption cycles. The experimental data can be appropriately described by the Yoon-Nelson kinetic model.
Project description:In this study, the adsorption properties of a Stöber silica-based material towards CO2 were evaluated for the first time. The use of Stöber silica as support is interesting for real technological applications mainly due to economic factors. Furthermore, a direct comparison between the non porous Stöber sample with an ordered porous material (based on MCM-41 silica) allowed to evaluate the effect of the porosity on the CO2 adsorption properties. In order to make silica materials reactive towards CO2, they were functionalized by introducing amino groups via grafting of 3-[2-(2-aminoethyl)aminoethyl]aminopropyltrimethoxysilane. After a qualitative study of the CO2 adsorption, the quantitative determination of CO2 adsorption capacity at 35 °C revealed that the mesoporous material is more efficient compared to the Stöber-based one (adsorption capacity values of 0.49 and 0.58 mol/kg for Stöber-based and mesoporous samples). However, since the difference in the adsorption capacity is only about 15 % and the Stöber-based sample is considerably cheaper, the non-porous sample should be considered as a favourable adsorbent material for CO2 capture applications.
Project description:For decades, local bone drug delivery systems have been investigated in terms of their application in regenerative medicine. Among them, inorganic polymers based on amorphous silica have been widely explored. In this work, we combined two types of amorphous silica: bioglass and doxycycline-loaded mesoporous silica MCM-41 into the form of spherical granules (pellets) as a bifunctional bone drug delivery system. Both types of silica were obtained in a sol-gel method. The drug adsorption onto the MCM-41 was performed via adsorption from concentrated doxycycline hydrochloride solution. Pellets were obtained on a laboratory scale using the wet granulation-extrusion-spheronization method and investigated in terms of physical properties, drug release, antimicrobial activity against Staphylococcus aureus, mineralization properties in simulated body fluid, and cytotoxicity towards human osteoblasts. The obtained pellets were characterized by satisfactory mechanical properties which eliminated the risk of pellets cracking during further investigations. The biphasic drug release from pellets was observed: burst stage (44% of adsorbed drug released within the first day) followed by prolonged release with zero-order kinetics (estimated time of complete drug release was 19 days) with maintained antimicrobial activity. The progressive biomimetic apatite formation on the surface of the pellets was observed. No cytotoxic effect of pellets towards human osteoblasts was noticed.
Project description:Although mesoporous silica materials have been widely investigated for many applications, most silica materials are made by calcination processes. We successfully developed a convenient method to synthesize mesoporous materials at room temperature. Although the silica materials made by the two different methods, which are the calcination process and the room-temperature process, have similar specific surface areas, the silica materials produced with the room-temperature process have a significantly larger pore volume. This larger pore volume has the potential to attach to functional groups that can be applied to various industrial fields such as CO2 adsorption. This mesoporous silica with a larger pore volume was analyzed by TEM, FT-IR, low angle X-ray diffraction, N2-adsorption analysis, and CO2 adsorption experiments in comparison with the mesoporous silica synthesized with the traditional calcination method.
Project description:Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration.
Project description:An efficient CO2 adsorbent with a hierarchically micro-mesoporous structure and a large number of amine groups was fabricated by a two-step synthesis technique. Its structural properties, surface groups, thermal stability and CO2 adsorption performance were fully investigated. The analysis results show that the prepared CO2 adsorbent has a specific hierarchically micro-mesoporous structure and highly uniformly dispersed amine groups that are favorable for the adsorption of CO2. At the same time, the CO2 adsorption capacity of the prepared adsorbent can reach a maximum of 3.32 mmol-CO2/g-adsorbent in the actual flue gas temperature range of 303-343 K. In addition, the kinetic analysis results indicate that both the adsorption process and the desorption process have rapid adsorption/desorption rates. Finally, the fitting of the CO2 adsorption/desorption experimental data by Avrami's fractional kinetic model shows that the CO2 adsorption rate is mainly controlled by the intra-particle diffusion rate, and the temperature has little effect on the adsorption rate.