Project description:BackgroundFollowing stroke, many people have difficulty activating their paretic muscles quickly and with sufficient power to regain their balance by taking quick and effective steps. Reduced dynamic balance and mobility following stroke, or 'walking balance', is associated with reduced self-efficacy and restrictions in daily living activities, community integration, and quality of life. Targeted training of movement speeds required to effectively regain balance has been largely overlooked in post-stroke rehabilitation. The Fast muscle Activation and Stepping Training (FAST) program incorporates fast functional movements known to produce bursts of muscle activation essential for stepping and regaining standing balance effectively. The purpose of this study is to: 1) compare the effectiveness of an outpatient FAST program to an active control outpatient physiotherapy intervention in improving walking balance following stroke, and 2) explore potential mechanisms associated with improvements in walking balance.Methods/designThis will be an assessor-blinded, parallel group randomized controlled trial design. Sixty participants (30 per group) who have sustained a stroke within the previous six months will be randomly assigned with stratification for lower limb motor recovery to receive twelve 45-minute 1:1 physiotherapy intervention sessions over 6 - 10 weeks in an outpatient setting of either: 1) FAST intervention - systematic and progressive practice of fast squatting and stepping exercises, or 2) active control - conventional physiotherapy directed at improving balance and mobility that includes no targeted fast movement training. The same blinded research physiotherapist will assess outcomes at three time points: 1) baseline (prior to intervention), 2) follow up (within one week post-intervention); and 3) retention (one month post-intervention). The primary outcome is dynamic balance assessed using the Community Balance and Mobility Scale. We will also assess fast and self-selected walking speed, balance self-efficacy, and the ability to respond to internal and external perturbations to balance and associated changes in postural muscle activation.DiscussionThe targeted training of fast functional movements in the FAST program is expected to improve walking balance following stroke compared to the active control intervention. Unique to this study is the investigation of potential mechanisms associated with improvements in walking balance.Trial registrationNCT01573585.
Project description:ObjectiveTo compare the effect of motor imagery combined with structured progressive circuit class therapy vs health education combined with structured progressive circuit class therapy on dynamic balance, endurance, and functional mobility in post-stroke individuals.DesignRandomized controlled trial.MethodsA total of 40 post-stroke individuals were randomly assigned to experimental and control groups. The experimental group was trained using motor imagery combined with structured progressive circuit class therapy, while the control group received health education combined with structured progressive circuit class therapy, 3 times a week for 4 weeks with an overall of 12 sessions. Outcomes included the step test for affected and unaffected limbs, the 6-Minute Walk Test, and the Timed Up and Go test. Assessments were performed at baseline, 2 weeks, and 4 weeks after the intervention Results: There were significant effects (p < 0.05) of: group on the step test for unaffected limb; of time on all outcomes; and of their interaction effect on the step test for affected limb, 6-Minute Walk Test, and Timed Up and Go test. Inter-group comparison showed significant differences (p < 0.05) in the step test for unaffected limb at 2 weeks after the intervention. At 4 weeks after the intervention, significant differences (p < 0.05) were found in the step test for affected and unaffected limbs and in the Timed Up and Go test.ConclusionMotor imagery combined with structured progressive circuit class therapy was more effective on the step test, 6-Minute Walk Test, and Timed Up and Go test than training with structured progressive circuit class therapy alone. This suggest that that motor imagery should be incorporated into training programmes for restoring dynamic balance, endurance, and functional mobility in post-stroke individuals.
Project description:BackgroundExergaming is a fun, engaging, and interactive form of exercising that may help overcome some of the traditional exercise barriers and help improve adherence on the part of older adults, providing therapeutic applications for balance recovery and functional mobility. The purpose of this systematic review is to summarize the effects of exergames on mobility and balance in older adults.MethodsThe PRISMA guidelines for systematic reviews were followed. The following databases were searched from inception to August 2019: Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, PEDro, CINAHL, and INSPEC. We selected randomized controlled trials that assessed the effects of exergames on balance or mobility of older adults without neurological conditions, in comparison to no intervention or health education. Two review authors independently screened the trials' titles and abstracts and identified trials for inclusion according to the eligibility criteria. An almost perfect agreement between the authors was observed with respect to interrater reliability of trial selection (kappa = 0.84; P < 0.001). We performed descriptive analysis of the quantitative data to summarize the evidence. Meta-analysis was carried out using RevMan. A random effects model was used to compute the pooled prevalence with 95% confidence intervals.ResultsAfter screening 822 records, 12 trials comparing exergames with no intervention were included. A total of 1520 older adults participated in the studies, with a mean age of 76 ± 6 years for the experimental group and 76 ± 5 years for the control group. Quantitative synthesis showed significant improvements in balance and mobility based on the center of pressure sway (SMD = - 0.89; 95%CI = - 1.26 to - 0.51; P = 0.0001; I2 = 58%), Berg Balance Scale (MD = 2.15; 95%CI = 1.77 to 2.56; P = 0.0001; I2 = 96%), and on Timed Up and Go test (MD = - 2.48; 95%CI = - 3.83 to - 1.12; P = 0.0003; I2 = 0).ConclusionsExergames improved balance and mobility in older adults without neurological disorders and motivate patients to keep performing balance exercises. High quality studies with standardized assessment protocols are necessary to improve the strength of the evidence.
Project description:People post-stroke have an increased risk of falls compared to neurotypical individuals, partly resulting from an inability to generate appropriate reactions to restore balance. However, few studies investigated the effect of paretic deficits on the mechanics of reactive control strategies following forward losses of balance during walking. Here, we characterized the biomechanical consequences of reactive control strategies following perturbations induced by the treadmill belt accelerations. Thirty-eight post-stroke participants and thirteen age-matched and speed-matched neurotypical participants walked on a dual-belt treadmill while receiving perturbations that induced a forward loss of balance. We computed whole-body angular momentum and angular impulse using segment kinematics and reaction forces to quantify the effect of impulse generation by both the leading and trailing limbs in response to perturbations in the sagittal plane. We found that perturbations to the paretic limb led to larger increases in forward angular momentum during the perturbation step than perturbations to the non-paretic limb or to neurotypical individuals. To recover from the forward loss of balance, neurotypical individuals coordinated reaction forces generated by both legs to decrease the forward angular impulse relative to the pre-perturbation step. They first decreased the forward pitch angular impulse during the perturbation step. Then, during the first recovery step, they increased the backward angular impulse by the leading limb and decreased the forward angular impulse by the trailing limb. In contrast to neurotypical participants, people post-stroke did not reduce the forward angular impulse generated by the stance limb during the perturbed step. They also did not increase leading limb angular impulse or decrease the forward trailing limb angular impulse using their paretic limb during the first recovery step. Lastly, post-stroke individuals who scored poorer on clinical assessments of balance and had greater motor impairment made less use of the paretic limb to reduce forward momentum. Overall, these results suggest that paretic deficits limit the ability to recover from forward loss of balance. Future perturbation-based balance training targeting reactive stepping response in stroke populations may benefit from improving the ability to modulate paretic ground reaction forces to better control whole-body dynamics.
Project description:BackgroundBalance impairment is a common disability in post-stroke survivors, leading to reduced mobility and increased fall risk. Robotic gait training (RAGT) is largely used, along with traditional training. There is, however, no strong evidence about RAGT superiority, especially on balance. This study aims to determine RAGT efficacy on balance of post-stroke survivors.MethodsPubMed, Cochrane Library, and PeDRO databases were investigated. Randomized clinical trials evaluating RAGT efficacy on post-stroke survivor balance with Berg Balance Scale (BBS) or Timed Up and Go test (TUG) were searched. Meta-regression analyses were performed, considering weekly sessions, single-session duration, and robotic device used.ResultsA total of 18 trials have been included. BBS pre-post treatment mean difference is higher in RAGT-treated patients, with a pMD of 2.17 (95% CI 0.79; 3.55). TUG pre-post mean difference is in favor of RAGT, but not statistically, with a pMD of -0.62 (95%CI - 3.66; 2.43). Meta-regression analyses showed no relevant association, except for TUG and treatment duration (β = -1.019, 95% CI - 1.827; -0.210, p-value = 0.0135).ConclusionsRAGT efficacy is equal to traditional therapy, while the combination of the two seems to lead to better outcomes than each individually performed. Robot-assisted balance training should be the focus of experimentation in the following years, given the great results in the first available trials. Given the massive heterogeneity of included patients, trials with more strict inclusion criteria (especially time from stroke) must be performed to finally define if and when RAGT is superior to traditional therapy.
Project description:Various interventions to physical rehabilitation have been used after stroke, including musculoskeletal, neurophysiological, and motor learning interventions, with ongoing debates and controversies about their relative effectiveness. In this systematic review, we searched 3 international electronic databases (MEDLINE, Embase, and Cochrane Library) to identify relevant studies. We included only randomized controlled trials (RCTs) that directly compared motor relearning, neurophysiological, and musculoskeletal interventions for improving motor function in adult stroke patients. Risk of bias (RoB) assessment was performed using Cochrane's RoB tool, and meta-analysis was conducted using Revman 5.4 with a random effects model. Certainty of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations method. The meta-analysis for immediate outcome for physical rehabilitation included 9 RCTs for balance, 10 RCTs for gait velocity, 7 RCTs for lower extremity motor function and 8 RCTs for performance of activities of daily living. There was no statistically significant different on improvement of balance, gait velocity, lower extremity motor function and performance of activity among physical rehabilitation interventions. Moderate-level evidence supports that no single intervention is superior. Clinicians and therapist should consider individual patient characteristics, preferences, and available resources when selecting the intervention for stroke rehabilitation.
Project description:BackgroundTreadmill training, with or without body-weight support (BWSTT), typically involves high step count, faster walking speed, and higher heart-rate intensity than overground walking training. The addition of challenging mobility skill practice may offer increased opportunities to improve walking and balance skills. Here we compare walking and balance outcomes of chronic stroke survivors performing BWSTT with BWSTT including challenging mobility skills.MethodsSingle-blind randomized clinical trial comparing two BWSTT interventions performed in a rehabilitation research laboratory facility over 6 weeks. Participants were 18+ years of age with chronic (≥5 months) poststroke hemiparesis due to a cortical or subcortical ischemic or hemorrhagic stroke and walking speeds < 1.1 m/s at baseline. A hands-free group (HF; n = 15) performed BWSTT without assistance from handrails or assistive devices, and a hands-free plus challenge group (HF + C; n = 14) performed the same protocol while additionally practicing challenging mobility skills. The primary outcome was change in comfortable walking speed (CWS), with secondary outcomes of fast walk speed (FWS), six-minute walk distance, Berg Balance Scale (BBS) scores, and Activities Specific Balance Confidence (ABC) scores.ResultsSignificant pre-post improvement of CWS (Z = - 4.2, p ≤ 0.0001) from a median of 0.35 m/s (range 0.10 to 1.09) to a median of 0.54 m/s (range 0.1 to 1.17), but no difference observed between groups (U = 96.0, p = 0.69). Pre-post improvements across all participants resulted in reclassified baseline ambulation status from sixteen to ten household ambulators, three to seven limited community ambulators, and ten to twelve community ambulators. Secondary outcomes showed similar pre-post improvements with no between-group differences.ConclusionsThe addition of challenging mobility skills to a hands-free BWSTT protocol did not lead to greater improvements in CWS following 6 weeks of training. One reason for lack of group differences may be that both groups were adequately challenged by walking in an active, self-driven treadmill environment without use of handrails or assistive devices.Trial registrationNCT02787759 Falls-based Training for Walking Post-Stroke (FBT); retrospectively registered June 1st, 2016.
Project description:To assess the effect of therapeutic massage for improving sequelae in stroke survivors. A systematic review of the nine medical databases from January 1961 to December 2020 was carried out. The bibliography was screened to identify randomized controlled clinical trials (RCTs). Two reviewers independently screened references, selected relevant studies, extracted data and assessed the risk of bias using the PEDro scale. The primary outcome was upper and lower limb motor function and spasticity. A total of 3196 studies were identified and 18 RCT were finally included (1989 individuals). A meta-analysis of RCTs in the comparison of Chinese massage (Tuina) plus conventional physiotherapy versus conventional physiotherapy was performed. The mean difference (MD) in the subacute stage on upper limb motor-function using the Fugl Meyer Assessment was 2.75; (95% confidence interval (CI) from 0.97 to 4.53, p = 0.002, I2 = 36%). The MD on upper limb spasticity using modified Ashworth scale was -0.15; (95% CI from -0.24 to -0.06, p < 0.02, I2 = 0%).The MD on lower limb spasticity was -0.59; (95% CI from -0.78 to -0.40, p < 0.001, I2 = 0%) in the endpoint. Therapeutic massage, especially Tuina, in addition to conventional therapy is effective for improving motor function and for reducing spasticity in stroke survivors.
Project description:BackgroundRepetitive task training (RTT) involves the active practice of task-specific motor activities and is a component of current therapy approaches in stroke rehabilitation.ObjectivesPrimary objective: To determine if RTT improves upper limb function/reach and lower limb function/balance in adults after stroke. Secondary objectives: 1) To determine the effect of RTT on secondary outcome measures including activities of daily living, global motor function, quality of life/health status and adverse events. 2) To determine the factors that could influence primary and secondary outcome measures, including the effect of 'dose' of task practice; type of task (whole therapy, mixed or single task); timing of the intervention and type of intervention.Search methodsWe searched the Cochrane Stroke Group Trials Register (4 March 2016); the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 5: 1 October 2006 to 24 June 2016); MEDLINE (1 October 2006 to 8 March 2016); Embase (1 October 2006 to 8 March 2016); CINAHL (2006 to 23 June 2016); AMED (2006 to 21 June 2016) and SPORTSDiscus (2006 to 21 June 2016).Selection criteriaRandomised/quasi-randomised trials in adults after stroke, where the intervention was an active motor sequence performed repetitively within a single training session, aimed towards a clear functional goal.Data collection and analysisTwo review authors independently screened abstracts, extracted data and appraised trials. We determined the quality of evidence within each study and outcome group using the Cochrane 'Risk of bias' tool and GRADE (Grades of Recommendation, Assessment, Development and Evaluation) criteria. We did not assess follow-up outcome data using GRADE. We contacted trial authors for additional information.Main resultsWe included 33 trials with 36 intervention-control pairs and 1853 participants. The risk of bias present in many studies was unclear due to poor reporting; the evidence has therefore been rated 'moderate' or 'low' when using the GRADE system. There is low-quality evidence that RTT improves arm function (standardised mean difference (SMD) 0.25, 95% confidence interval (CI) 0.01 to 0.49; 11 studies, number of participants analysed = 749), hand function (SMD 0.25, 95% CI 0.00 to 0.51; eight studies, number of participants analysed = 619), and lower limb functional measures (SMD 0.29, 95% CI 0.10 to 0.48; five trials, number of participants analysed = 419). There is moderate-quality evidence that RTT improves walking distance (mean difference (MD) 34.80, 95% CI 18.19 to 51.41; nine studies, number of participants analysed = 610) and functional ambulation (SMD 0.35, 95% CI 0.04 to 0.66; eight studies, number of participants analysed = 525). We found significant differences between groups for both upper-limb (SMD 0.92, 95% CI 0.58 to 1.26; three studies, number of participants analysed = 153) and lower-limb (SMD 0.34, 95% CI 0.16 to 0.52; eight studies, number of participants analysed = 471) outcomes up to six months post treatment but not after six months. Effects were not modified by intervention type, dosage of task practice or time since stroke for upper or lower limb. There was insufficient evidence to be certain about the risk of adverse events.Authors' conclusionsThere is low- to moderate-quality evidence that RTT improves upper and lower limb function; improvements were sustained up to six months post treatment. Further research should focus on the type and amount of training, including ways of measuring the number of repetitions actually performed by participants. The definition of RTT will need revisiting prior to further updates of this review in order to ensure it remains clinically meaningful and distinguishable from other interventions.