Project description:The crisis facing the world's oceans from plastics is well documented, yet there is little knowledge of the perspectives, experiences and options of the coastal communities facing overwhelming quantities of plastics on their beaches and in their fishing waters. In emerging economies such as those in the Coral Triangle, the communities affected are among the poorest of their countries. To understand the consequences of ocean plastic pollution in coastal regions, through the eyes of local people, this study examines the knowledge, use, disposal and local consequences of single use plastics in remote island communities in two archipelagos of southern Sulawesi, Indonesia. Using mixed methods-a survey of plastic literacy and behaviour, household interviews about purchasing and disposal, and focus group discussions to generate shared mental models-we identify a complex set of factors contributing to extensive plastic leakage into the marine environment. The rising standard of living has allowed people in low resource, remote communities to buy more single-use plastic items than they could before. Meanwhile complex geography and minimal collection services make waste management a difficult issue, and leave the communities themselves to shoulder the impacts of the ocean plastic crisis. Although plastic literacy is low, there is little the coastal communities can do unless presented with better choice architecture both on the supply side and in disposal options. Our results suggest that for such coastal communities improved waste disposal is urgent. Responsible supply chains and non-plastic alternatives are needed. Producers and manufacturers can no longer focus only on low-cost packaged products, without taking responsibility for the outcomes. Without access to biodegradable, environmentally friendly products, and a circular plastic system, coastal communities and surrounding marine ecosystems will continue to be inundated in plastic waste.
Project description:The seafloor is the major sink for microplastic (MP) pollutants. However, there is a lack of robust data on the historical evolution of MP pollution in the sediment compartment, particularly the sequestration and burial rate of small MPs. By combining a palaeoceanographic approach and state-of-the-art analytical methods for MP identification down to 11 μm in size, we present the first high-resolution reconstruction of MP pollution from an undisturbed sediment core collected in the NW Mediterranean Sea. Furthermore, we investigate the fate of MPs once buried in the sediments by evaluating the changes in the size distribution of the MPs and the weathering status of the polyolefins, polyethylene, and polypropylene. Our results indicate that the MP mass sequestered in the sediment compartment mimics the global plastic production from 1965 to 2016. We observed an increase in the weathering status of the polyolefins as the size decreased. However, the variability in the size and weathering status of the MPs throughout the sedimentary record indicated that these pollutants, once incorporated into sediments, remain preserved with no further degradation under conditions lacking remobilization.
Project description:Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands), we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1) during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1) both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1) reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years), thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1) allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic) methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments.
Project description:BackgroundSynthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K.ResultsBacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH.ConclusionsThese results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats.
Project description:We explore the possibility of using the varnish (Nutallia obscurata) and Manila (Venerupis philippinarum) clams as biomonitors of microplastics (MPs) pollution. A short review is first provided on the use of bivalves for biomonitoring MPs in aquatic ecosystems. From the conclusions drawn from our review we determine if the sediment dwelling varnish and Manila clam could possibly be good choices for this purpose. We sampled 8 intertidal sites located within two distinct regions of coastal British Columbia, Burrard Inlet (5 sites) and Baynes Sound (3 sites). Each intertidal region had its own particular use; within Burrard Inlet, BMP a heavily used marine park, CP, EB, J, and AP, popular local beaches, and within Baynes Sound, Met and NHB, two intertidal regions heavily exploited by the shellfish industry and RU an intertidal region with limited aquaculture activity. Microfragments were recovered from bivalves collected from all intertidal regions except for AP. Microspheres were recovered primarily from bivalves sampled from Baynes Sound at NHB where high numbers of spheres within sediments had previously been reported. BMP and Met had the highest number of particles present within individual clams which were predominantly high density polyethylene (HDPE) and a polypropylene composite (PPC). Both polymers are extensively used by the shellfish industry in all gear types, as well as in industrial and recreational marine activities. The spatial distribution of recovered MPs was indicative of the anthropogenic use of the intertidal region suggesting these bivalves, for microfragments and microspheres, may be suitable as biomonitors and could prove to be useful tools for determining whether reduction policies for plastics use are having a positive effect on their release into marine environments.
Project description:BackgroundA key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface.ResultsCompared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation.ConclusionsThese novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses upon oxygenation of dead zones. Moreover, these results highlight that microbial responses, and therefore ultimately remediation efforts, depend largely on the oxygenation history of sites. Furthermore, it was shown that re-oxygenation efforts to remediate dead zones could ultimately be facilitated by in situ microbial molecular mechanisms involved in removal of toxic H2S and the potent greenhouse gas methane.
Project description:Plastics are dominant pollutants in freshwater ecosystems worldwide. Scientific studies that investigated the interaction between plastics and freshwater biodiversity are incipient, especially if compared to the marine realm. In this review, we provide a brief overview of plastic pollution in freshwater ecosystems around the world. We found evidence of plastic ingestion by 206 freshwater species, from invertebrates to mammals, in natural or semi-natural ecosystems. In addition, we reported other consequences of synthetic polymers in freshwater ecosystems-including, for instance, the entanglement of animals of different groups (e.g., birds). The problem of plastic pollution is complex and will need coordinated actions, such as recycling programs, correct disposal, stringent legislation, regular inspection, replacement of synthetic polymers with other materials, and ecological restoration. Current information indicates that the situation in freshwater ecosystems may be as detrimental as the pollution found in the ocean, although highly underappreciated.
Project description:We analyzed coastal sediments of the Santa Barbara Basin, California, for historical changes in microplastic deposition using a box core that spanned 1834-2009. The sediment was visually sorted for plastic, and a subset was confirmed as plastic polymers via FTIR (Fourier transform infrared) spectroscopy. After correcting for contamination introduced during sample processing, we found an exponential increase in plastic deposition from 1945 to 2009 with a doubling time of 15 years. This increase correlated closely with worldwide plastic production and southern California coastal population increases over the same period. Increased plastic loading in sediments has unknown consequences for deposit-feeding benthic organisms. This increase in plastic deposition in the post-World War II years can be used as a geological proxy for the Great Acceleration of the Anthropocene in the sedimentary record.