Project description:The ocean ranch environment contains ultra-low-frequency wave energy that can be utilized for powering low-power equipment. Therefore, this article proposes a smart ocean ranch self-powered and self-monitoring system (SOR-SSS) which consists of several key components: a mass pendulum ball (MPB), a commutation wheel system (CWS), an electromagnetic energy harvesting unit (EEHU), and four piezoelectric energy harvesting units (PEHU). Through six-degree-of-freedom vibration test bench experiments, the SOR-SSS achieved a maximum output power of 17.56 mW under a working condition of 0.4 Hz, which was sufficient to power 152 LED lights. Additionally, by training the experimental base data using the LSTM algorithm, two different tasks were trained with a maximum accuracy of 99.72% and 99.80%, respectively. These results indicate that the SOR-SSS holds significant potential for collecting and predicting ultra-low-frequency blue energy. It can provide an effective energy supply and monitoring solution for smart ocean ranch.
Project description:Hybrid energy-harvesting systems that capture both wave and solar energy from the oceans using triboelectric nanogenerators and photovoltaic cells are promising renewable energy solutions. However, ubiquitous shadows cast from moving objects in these systems are undesirable as they degrade the performance of the photovoltaic cells. Here we report a shadow-tribo-effect nanogenerator that hybrids tribo-effect and shadow-effect together to overcome this issue. Several fiber-supercapacitors are integrated with the shadow-tribo-effect nanogenerator to form a self-charging power system. To capture and store wave/solar energy from oceans, an energy ball based on the self-charging power system is demonstrated. By harnessing the shadow-effect, i.e. the shadow of the moving object in the energy ball, the charging time shortens to 253.3 s to charge the fiber-supercapacitors to the same voltage (0.3 V) as using pure tribo-effect. This cost-effective method to harvest and store the wave/solar energy from the oceans in this work is expected to inspire next-generation large-scale blue energy harvesting.
Project description:Triboelectric nanogenerators (TENGs) have potential to achieve energy harvesting and condition monitoring of oils, the "lifeblood" of industry. However, oil absorption on the solid surfaces is a great challenge for oil-solid TENG (O-TENG). Here, oleophobic/superamphiphobic O-TENGs are achieved via engineering of solid surface wetting properties. The designed O-TENG can generate an excellent electricity (with a charge density of 9.1 µC m-2 and a power density of 1.23 mW m-2), which is an order of magnitude higher than other O-TENGs made from polytetrafluoroethylene and polyimide. It also has a significant durability (30,000 cycles) and can power a digital thermometer for self-powered sensor applications. Further, a superhigh-sensitivity O-TENG monitoring system is successfully developed for real-time detecting particle/water contaminants in oils. The O-TENG can detect particle contaminants at least down to 0.01 wt% and water contaminants down to 100 ppm, which are much better than previous online monitoring methods (particle > 0.1 wt%; water > 1000 ppm). More interesting, the developed O-TENG can also distinguish water from other contaminants, which means the developed O-TENG has a highly water-selective performance. This work provides an ideal strategy for enhancing the output and durability of TENGs for oil-solid contact and opens new intelligent pathways for oil-solid energy harvesting and oil condition monitoring.
Project description:The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.
Project description:The emerging triboelectric nanogenerator (TENG) network shows great potential in harvesting the ocean wave energy, which can help to achieve large-scale clean wave power generation. However, due to the lack of an effective networking strategy and theoretical guidance, the practicability of the TENG network is heavily restricted. In this paper, based on the typical spherical TENG, we investigated the networking design of TENGs. Four fundamental forms of electrical networking topology are proposed for large-scale TENG networks, and the influences of cable resistance and output phase asynchrony of each unit to the network output were systematically investigated. The research results show that the forms of electrical networking topology can produce an important influence on the output power of large-scale TENG networks. This is the first strategy analysis for the TENG network, which provides a theoretical basis and a universal method for the optimization design of large-scale power networks.
Project description:Hybrid nanogenerators based on the principle of surface charging of functional films are significant in self-powering sensing and energy conversion devices due to their multiple functions and high conversion efficiency, although applications remain limited due to a lack of suitable materials and structures. Here, we investigate a triboelectric-piezoelectric hybrid nanogenerator (TPHNG) in the form of a mousepad for computer user behavior monitoring and energy harvesting. Triboelectric and piezoelectric nanogenerators with different functional films and structures work independently to detect sliding and pressing movements, and the profitable coupling between the two nanogenerators leads to enhanced device outputs/sensitivity. Different mouse operations such as clicking, scrolling, taking-up/putting-down, sliding, moving rate, and pathing can be detected by the device via distinguishable patterns of voltage ranging from 0.6 to 36 V. Based on operation recognition, human behavior monitoring is realized, with monitoring of tasks such as browsing a document and playing a computer game being successfully demonstrated. Energy harvesting from mouse sliding, patting, and bending of the device is realized with output voltages up to 37 V and power up to 48 μW while exhibiting good durability up to 20,000 cycles. This work presents a TPHNG utilizing surface charging for self-powered human behavior sensing and biomechanical energy harvesting.
Project description:In recent times, high-performance wearable electronic devices that can transform mechanical force into electrical energy for biomedical monitoring applications are receiving an increasing amount of attention. In the present study, we focused on a flexible, self-powered and wearable triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF)/aromatic hyperbranched polyester of 4th generation (Ar.HBP-G4, 0-40 wt.-% w.r.t. PVDF content) blend nanoweb as tribo-negative layer and melt-blown thermoplastic polyurethane (TPU) as tribo-positive layer for energy harvesting and human health monitoring applications. Among the varying Ar.HBP-G4 content used, incorporation of Ar.HBP-G4 (10 wt.-%) in PVDF (P-Ar.HBP-G4-10) showed higher increase in the triboelectric output voltage when compared to pristine PVDF and other Ar.HBP-G4 weight ratios. The optimized P-Ar.HBP-G4-10/TPU based TENG exhibited a peak-to-peak voltage (Vp-p) of 124.4 V under an applied load of 9.8 N and frequency 1 Hz which is superior to many other TENGs reported elsewhere. Higher triboelectric performance of P-Ar.HBP-G4 blend based TENG compared to that of neat PVDF is attributed to the effect of Ar.HBP-G4-10 in enhancing the degree of crystallinity and polar β-crystalline phase content (98.3%) in PVDF. The ability of the TENG to power up portable electronic devices is demonstrated when it is powered for 750 s while connected through a capacitor and a rectifier, and the TENG was able to operate 45 light-emitting diodes directly. Evaluation of the triboelectric output of the TENG device attached to different parts of the human body reveal significantly better output voltage and sensitivity for human health monitoring. The results of this work pave a new way to develop TENG based on P-Ar.HBP-G4 nanowebs for sustainable energy generation and wearable healthcare monitoring systems.
Project description:With the triboelectric nanogenerator developing in recent years, it has gradually become a promising alternative to fossil energy and batteries. Its rapid advancements also promote the combination of triboelectric nanogenerators and textiles. However, the limited stretchability of fabric-based triboelectric nanogenerators hindered their development in wearable electronic devices. Here, in combination with the polyamide (PA) conductive yarn, polyester multifilament, and polyurethane yarn, a highly stretchable woven fabric-based triboelectric nanogenerator (SWF-TENG) with the three elementary weaves is developed. Different from the normal woven fabric without elasticity, the loom tension of the elastic warp yarn is much larger than non-elastic warp yarn in the weaving process, which results in the high elasticity of the woven fabric coming from the loom. Based on the unique and creative woven method, SWF-TENGs are qualified with excellent stretchability (up to 300%), flexibility, comfortability, and excellent mechanical stability. It also exhibits good sensitivity and fast responsibility to the external tensile strain, which can be used as a bend-stretch sensor to detect and identify human gait. Its collected power under pressure mode is capable of lighting up 34 light-emitting diodes (LEDs) by only hand-tapping the fabric. SWF-TENG can be mass-manufactured by using the weaving machine, which decreases fabricating costs and accelerates industrialization. Based on these merits, this work provides a promising direction toward stretchable fabric-based TENGs with wide applications in wearable electronics, including energy harvesting and self-powered sensing.
Project description:The development of high-performance self-powered sensors in advanced composites addresses the increasing demands of various fields such as aerospace, wearable electronics, healthcare devices, and the Internet-of-Things. Among different energy sources, the thermoelectric (TE) effect which converts ambient temperature gradients to electric energy is of particular interest. However, challenges remain on how to increase the power output as well as how to harvest thermal energy at the out-of-plane direction in high-performance fiber-reinforced composite laminates, greatly limiting the pace of advance in this evolving field. Herein, we utilize a temperature-induced self-folding process together with continuous carbon nanotube veils to overcome these two challenges simultaneously, achieving a high TE output (21 mV and 812 nW at a temperature difference of 17 °C only) in structural composites with the capability to harvest the thermal energy from out-of-plane direction. Real-time self-powered deformation and damage sensing is achieved in fabricated composite laminates based on a thermal gradient of 17 °C only, without the need of any external power supply, opening up new areas of autonomous self-powered sensing in high-performance applications based on TE materials.
Project description:Research on outdoor, mobile, and self-powered temperature-control devices has always been highly regarded. These devices can reduce energy consumption for cooling and heating, and they have broad market prospects. On this basis, a rotary disc-shaped triboelectric nanogenerator (TENG) with a maximum open-circuit voltage of 6913 V, a maximum short-circuit current of 85 μA, and a maximum transferred charge of 1.3 μC was prepared. We synthesized a ferroelectric ceramic composed of 0.15PbTiO3-0.85PbSc0.5Ta0.5O3 (0.15PT-0.85PST), which exhibited excellent electrothermal effects at room temperature. By quenching, the electrothermal effect ( Δ Tmax) and energy harvesting properties of the device were 1.574 K and 0.542 J/cm3, respectively. Then, for the first time, we proposed a self-powered temperature quantification control system with a rotary disc-shaped TENG. This device effectively harnessed wind and water energy, in addition to other types of energy. The system consisted of energy collecting cups, a rotating disc-shaped FEP-rabbit fur TENG, a circuit management module, and a ferroelectric ceramic chip array. Through the circuit management module, the system converted external wind energy into a high-voltage electric field at the two ends of the 0.15PT-0.85PST ceramic chip to fully stimulate the electrothermal effect. At a speed of 200 rpm, the temperature change in the insulated cup within 276 s was 0.49 K, and the volume of the insulated cup was 300 times greater than that of the 0.15PT-0.85PST ceramic chip. Compared with the results reported in previous work, the cooling and heating times were both reduced by 31%, and the temperature changes for both cooling and heating increased by 81%. Moreover, the heating and cooling temperatures of the device optimized on this basis were increased to 1.19 K and 0.93 K, respectively. The great improvement in the temperature variation performance confirmed the great potential of the device for commercialization. This research could serve as a reference for reducing energy consumption for cooling and heating, and it meets the international energy policies of carbon dioxide emission peaking and carbon neutrality.