Ontology highlight
ABSTRACT:
SUBMITTER: Yun T
PROVIDER: S-EPMC11319202 | biostudies-literature | 2024 Aug
REPOSITORIES: biostudies-literature
Yun Taedong T Cosentino Justin J Behsaz Babak B McCaw Zachary R ZR Hill Davin D Luben Robert R Lai Dongbing D Bates John J Yang Howard H Schwantes-An Tae-Hwi TH Zhou Yuchen Y Khawaja Anthony P AP Carroll Andrew A Hobbs Brian D BD Cho Michael H MH McLean Cory Y CY Hormozdiari Farhad F
Nature genetics 20240708 8
Although high-dimensional clinical data (HDCD) are increasingly available in biobank-scale datasets, their use for genetic discovery remains challenging. Here we introduce an unsupervised deep learning model, Representation Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), for discovering associations between genetic variants and HDCD. REGLE leverages variational autoencoders to compute nonlinear disentangled embeddings of HDCD, which become the inputs to genome-wide associat ...[more]