Ontology highlight
ABSTRACT: Importance
There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
SUBMITTER: Laurich JR
PROVIDER: S-EPMC11324027 | biostudies-literature | 2024 Jul
REPOSITORIES: biostudies-literature
mBio 20240621 7
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects o ...[more]