Project description:The Didelphidae are considered solitary opossums with few social interactions, usually limited to mating-related or mother-pouch young interactions. Anecdotal reports suggest that additional interactions occur, including den sharing by a few individuals, usually siblings. Here, we report novel observations that indicate opossums are more social than previously thought. These include nest sharing by males and females of Marmosa paraguayana, Gracilinanus microtarsus and Marmosops incanus prior to the onset of the breeding season and without signs of sexual activity; this is taken to indicate early pair-bonding matching and cooperative nest building. We also recorded den sharing among recently weaned siblings of Didelphis aurita and Caluromys philander. In addition, we observed 13 individuals of Didelphis albiventris representing three age classes resting without agonistic interactions in a communal den. These are the first reports of gregarious behaviour involving so many individuals, which are either unrelated or represent siblings from at least two litters, already weaned, sharing the same den with three adults. Sociality in opossums is probably more complex than previously established, and field experimental designs combining the use of artificial nests with camera traps or telemetry may help to gauge the frequency and extent of these phenomena.
Project description:Usually considered a morphologically conservative group, didelphid marsupials present considerable variation in ecology and body size, some of which were shown to relate to morphological structures. Thus, changes on orbit morphology are likely and could be related to that variation. We calculated orbit orientation in 873 specimens of 16 Didelphidae genera yielding estimates of orbits convergence (their position relative to midsagittal line) and verticality (their position relative to frontal plane). We then compared similarities in these variables across taxa to ecological, morphological and phylogenetic data to evaluate the influencing factors on orbit orientation in didelphids. We found an inverse relation between convergence and verticality. Didelphids orbits have low verticality but are highly convergent, yet orbit orientation differs significantly between taxa, and that variation is related to morphological aspects of the cranium. Rostral variables are the only morphological features correlated with orbit orientation: increasing snout length yields more convergent orbits, whereas increase on snout breadth imply in more vertical orbits. Size and encephalization quotients are uncorrelated with orbit orientation. Among ecological data, diet showed significant correlation whereas locomotion is the factor that less affects the position of orbits. Phylogeny is uncorrelated to any orbital parameters measured. Ecological factors seemingly play a more important role on orbit orientation than previously expected, and differentiation on orbit orientation seems to be more functional than inherited. Thus, despite the apparent homogeneity on didelphid morphology, there is subtle morphological variability that may be directly related to feeding behavior.
Project description:Didelphis albiventris is a well-known and common marsupial. Due to its high adaptability, this very widespread generalist species occurs under various environmental conditions, this even including protected regions and disturbed urban areas. We studied a 653 bp fragment of cytochrome oxidase c (COI) from 93 biological samples from seven Brazilian localities, with linear distances ranging between 58 and about 1800 km to analyze the effects of geographic distances on variability and genetic differentiation. The haplotype network presented nine haplotypes and two genetic clusters compatible with the two most distant geographic areas of the states of Minas Gerais, in the southeast, and Rio Grande do Sul, in the extreme south. As each cluster was characterized by low nucleotide and high haplotype diversities, their populations were obviously composed of closely related haplotypes. Surprisingly, moderate to high F(ST) differentiation values and a very weak phylogeographic signal characterizes interpopulation comparisons within Minas Gerais interdemes, these being correlated with the presence of privative haplotypes. On a large rgeographic scale, a comparison between demes from Minas Gerais and Rio Grande do Sul presented high F(ST) values and a robust phylogeographic pattern. This unexpected scenario implies that mtDNA gene flow was insufficient to maintain population cohesion, reflected by the observed high differentiation.
Project description:We investigated the karyotype of 18 didelphid species captured at 13 localities in the Brazilian Amazon, after conventional staining, C-banding, Ag-NOR and fluorescent in situ hybridization (FISH) using the 18S rDNA probe. Variations were found in the X chromosome, heterochromatin distribution and the 18S rDNA sequence. The main variation observed was in the position of the centromere in the X chromosome of Caluromys philander Linnaeus, 1758 and Marmosa murina Linnaeus, 1758. For both species, the X chromosome showed a geographical segregation in the pattern of variation between eastern and western Brazil, with a possible contact area in the central Amazon. C-banding on the X chromosome revealed two patterns for the species of Marmosops Matschie, 1916, apparently without geographic or specific relationships. The nucleolus organizer region (NOR) of all species was confirmed with the 18S rDNA probe, except on the Y chromosome of Monodelphis touan Shaw, 1800. The distribution of this marker varied only in the genus Marmosa Gray, 1821 [M. murina Thomas, 1905 and M. demerarae Thomas, 1905]. Considering that simple NORs are seen as a plesiomorphic character, we conclude that the species Marmosa spp. and Didelphis marsupialis Linnaeus, 1758 evolved independently to the multiple condition. By increasing the sample, using chromosomal banding, and FISH, we verified that marsupials present intra- and interspecific chromosomal variations, which suggests the occurrence of frequent chromosomal rearrangements in the evolution of this group. This observation contrasts with the chromosomal conservatism expected for didelphids.
Project description:Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes.
Project description:From August 2011 to November 2013, 68 opossums (8 Didelphis sp., 40 Didelphisvirginiana, 15 Didelphismarsupialis, and 5 Philanderopossum) were collected in 18 localities from 12 Mexican states. A total of 12,188 helminths representing 21 taxa were identified (6 trematodes, 2 cestodes, 3 acanthocephalans and 10 nematodes). Sixty-six new locality records, 9 new host records, and one species, the trematode Brachylaimadidelphus, is added to the composition of the helminth fauna of the opossums in Mexico. These data, in conjunction with previous records, bring the number of taxa parasitizing the Mexican terrestrial marsupials to 41. Among these species, we recognized a group of helminths typical of didelphids in other parts of the Americas. This group is constituted by the trematode Rhopaliascoronatus, the acanthocephalan Oligacanthorhynchusmicrocephalus and the nematodes Cruziatentaculata, Gnathostomaturgidum, and Turgidaturgida. In general, the helminth fauna of each didelphid species showed a stable taxonomic composition with respect to previously sampled sites. This situation suggests that the rate of accumulation of helminth species in the inventory of these 3 species of terrestrial marsupials in the Neotropical portion of Mexico is decreasing; however, new samplings in the Nearctic portion of this country will probably increase the richness of the helminthological inventory of this group of mammals.
Project description:Aquatic birds exceed other terrestrial vertebrates in the diversity of their adaptations to aquatic niches. For many species this has created difficulty in understanding their evolutionary origin and, in particular, for the flamingos, hamerkop, shoebill and pelecaniforms. Here, new evidence from nuclear and mitochondrial DNA sequences and DNA-DNA hybridization data indicates extensive morphological convergence and divergence in aquatic birds. Among the unexpected findings is a grouping of flamingos and grebes, species which otherwise show no resemblance. These results suggest that the traditional characters used to unite certain aquatic groups, such as totipalmate feet, foot-propelled diving and long legs, evolved more than once and that organismal change in aquatic birds has proceeded at a faster pace than previously recognized.
Project description:In recent decades the diploid numbers recorded in the New World marsupials have been widely discussed in the context of the processes of karyotype evolution in these mammals. While Interstitial Telomeric Sequences (ITS) have long been interpreted as remnants of chromosomal fusion, the biological role of these features, together with their intraspecific variation, has raised a number of questions. In the present study, we analyzed the karyotype of 11 species of Amazonian didelphids, comparing the distribution of the heterochromatin with that of the telomeric signals, and found that, in six species, the ITS coincided with the blocks of heterochromatin. While ITS were found in the X chromosomes of all Marmosa murina individuals, they were variable in all the other species, representing a specific character of each lineage. Our results support the conclusion that ITS may not always be a consequence of chromosomal rearrangements, and that the mechanisms that produce them are still unclear.
Project description:We discuss the basic features of divergent versus convergent evolution and of the common scenario of parallel evolution. The example of quorum-quenching lactonases is subsequently described. Three different quorum-quenching lactonase families are known, and they belong to three different superfamilies. Their key active-site architectures have converged and are strikingly similar. Curiously, a promiscuous organophosphate hydrolase activity is observed in all three families. We describe the structural and mechanistic features that underline this converged promiscuity and how this promiscuity drove the parallel divergence of organophosphate hydrolases within these lactonase families by either natural or laboratory evolution.
Project description:Didelphis species have been shown to exhibit very conservative karyotypes, which mainly differ in their constitutive heterochromatin, known to be mostly composed by repetitive DNAs. In this study, we used genome skimming data combined with computational pipelines to identify the most abundant repetitive DNA families of Lutreolina crassicaudata and all six Didelphis species. We found that transposable elements (TEs), particularly LINE-1, endogenous retroviruses, and SINEs, are the most abundant mobile elements in the studied species. Despite overall similar TE proportions, we report that species of the D. albiventris group consistently present a less diverse TE composition and smaller proportions of LINEs and LTRs in their genomes than other studied species. We also identified four new putative satDNAs (sat206, sat907, sat1430 and sat2324) in the genomes of Didelphis species, which show differences in abundance and nucleotide composition. Phylogenies based on satDNA sequences showed well supported relationships at the species (sat1430) and groups of species (sat206) level, recovering topologies congruent with previous studies. Our study is one of the first attempts to present a characterization of the most abundant families of repetitive DNAs of Lutreolina and Didelphis species providing insights into the repetitive DNA composition in the genome landscape of American marsupials.