Unknown

Dataset Information

0

Targeting the A site RNA of the Escherichia coli ribosomal 30 S subunit by 2'-O-methyl oligoribonucleotides: a quantitative equilibrium dialysis binding assay and differential effects of aminoglycoside antibiotics.


ABSTRACT: The bacterial ribosome comprises 30 S and 50 S ribonucleoprotein subunits, contains a number of binding sites for known antibiotics and is an attractive target for selection of novel antibacterial agents. On the 30 S subunit, for example, the A site (aminoacyl site) close to the 3'-end of 16 S rRNA is highly important in the decoding process. Binding by some aminoglycoside antibiotics to the A site leads to erroneous protein synthesis and is lethal for bacteria. We targeted the A site on purified 30 S ribosomal subunits from Escherichia coli with a set of overlapping, complementary OMe (2'-O-methyl) 10-mer oligoribonucleotides. An equilibrium dialysis technique was applied to measure dissociation constants of these oligonucleotides. We show that there is a single high-affinity region, spanning from A1493 to C1510 (Kd, 29-130 nM), flanked by two lower-affinity regions, within a span from U1485 to G1516 (Kd, 310-4300 nM). Unexpectedly, addition of the aminoglycoside antibiotic paromomycin (but not hygromycin B) caused a dose-dependent increase of up to 7.5-fold in the binding of the highest affinity 10-mer 1493 to 30 S subunits. Oligonucleotides containing residues complementary to A1492 and/or A1493 showed particularly marked stimulation of binding by paromomycin. The results are consistent with high-resolution structures of antibiotic binding to the A site and with greater accessibility of residues of A1492 and A1493 upon paromomycin binding. 10-mer 1493 binding is thus a probe of the conformational switch to the 'closed' conformation triggered by paromomycin that is implicated in the discrimination by 30 S subunits of cognate from non-cognate tRNA and the translational misreading caused by paromomycin. Finally, we show that OMe oligonucleotides targeted to the A site are moderately good inhibitors of in vitro translation and that there is a limited correlation of inhibition activity with binding strength to the A site.

SUBMITTER: Abelian A 

PROVIDER: S-EPMC1134060 | biostudies-literature | 2004 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting the A site RNA of the Escherichia coli ribosomal 30 S subunit by 2'-O-methyl oligoribonucleotides: a quantitative equilibrium dialysis binding assay and differential effects of aminoglycoside antibiotics.

Abelian Arthur A   Walsh Andrew P AP   Lentzen Georg G   Aboul-Ela Fareed F   Gait Michael J MJ  

The Biochemical journal 20041001 Pt 2


The bacterial ribosome comprises 30 S and 50 S ribonucleoprotein subunits, contains a number of binding sites for known antibiotics and is an attractive target for selection of novel antibacterial agents. On the 30 S subunit, for example, the A site (aminoacyl site) close to the 3'-end of 16 S rRNA is highly important in the decoding process. Binding by some aminoglycoside antibiotics to the A site leads to erroneous protein synthesis and is lethal for bacteria. We targeted the A site on purifie  ...[more]

Similar Datasets

| S-EPMC4522699 | biostudies-literature
| S-EPMC5774723 | biostudies-literature
| S-EPMC394890 | biostudies-other
| S-EPMC6985731 | biostudies-literature
| S-EPMC10288597 | biostudies-literature
| S-EPMC10054953 | biostudies-literature
| S-EPMC6788953 | biostudies-literature
| S-EPMC7603143 | biostudies-literature
| S-EPMC2797289 | biostudies-literature
| S-EPMC1283848 | biostudies-literature