Project description:Since critical respiratory muscle workload is a significant determinant of weaning failure, applied mechanical power (MP) during artificial ventilation may serve for readiness testing before proceeding on a spontaneous breathing trial (SBT). Secondary analysis of a prospective, observational study in 130 prolonged ventilated, tracheotomized patients. Calculated MP's predictive SBT outcome performance was determined using the area under receiver operating characteristic curve (AUROC), measures derived from k-fold cross-validation (likelihood ratios, Matthew's correlation coefficient [MCC]), and a multivariable binary logistic regression model. Thirty (23.1%) patients failed the SBT, with absolute MP presenting poor discriminatory ability (MCC 0.26; AUROC 0.68, 95%CI [0.59‒0.75], p = 0.002), considerably improved when normalized to lung-thorax compliance (LTCdyn-MP, MCC 0.37; AUROC 0.76, 95%CI [0.68‒0.83], p < 0.001) and mechanical ventilation PaCO2 (so-called power index of the respiratory system [PIrs]: MCC 0.42; AUROC 0.81 [0.73‒0.87], p < 0.001). In the logistic regression analysis, PIrs (OR 1.48 per 1000 cmH2O2/min, 95%CI [1.24‒1.76], p < 0.001) and its components LTCdyn-MP (1.25 per 1000 cmH2O2/min, [1.06‒1.46], p < 0.001) and mechanical ventilation PaCO2 (1.17 [1.06‒1.28], p < 0.001) were independently related to SBT failure. MP normalized to respiratory system compliance may help identify prolonged mechanically ventilated patients ready for spontaneous breathing.
Project description:BackgroundMechanical power (MP) of artificial ventilation, the energy transferred to the respiratory system, is a chief determinant of adequate oxygenation and decarboxylation. Calculated MP, the product of applied airway pressure and minute ventilation, may serve as an estimate of respiratory muscle workload when switching to spontaneous breathing. The aim of the study was to assess MP's discriminatory performance in predicting successful weaning from prolonged tracheostomy ventilation.MethodsProspective, observational study in 130 prolonged mechanically ventilated, tracheotomized patients in a specialized weaning center. Predictive weaning outcome ability of arterial blood gas analyses and indices derived from calculated MP at beginning and end of weaning was determined in terms of area under receiver operating characteristic curve (AUROC) and measures derived from k-fold cross-validation (likelihood ratios, diagnostic odds ratio, F1 score, and Matthews correlation coefficient [MCC]).ResultsForty-four (33.8%) patients experienced weaning failure. Absolute MP showed poor discrimination in predicting outcome; whereas specific MP (MP normalized to dynamic lung-thorax compliance, LTCdyn-MP) had moderate diagnostic accuracy (MCC 0.38; AUROC 0.79, 95%CI [0.71‒0.86], p < 0.001), further improved by correction for corresponding mechanical ventilation PaCO2 (termed the power index of the respiratory system [PIrs]: MCC 0.52; AUROC 0.86 [0.79‒0.92], p < 0.001). Diagnostic performance of MP indices increased over the course of weaning, with maximum accuracy immediately before completion (LTCdyn-MP: MCC 0.49; AUROC 0.86 [0.78‒0.91], p < 0.001; PIrs: MCC 0.68; AUROC 0.92 [0.86‒0.96], p < 0.001).ConclusionsMP normalized to dynamic lung-thorax compliance, a surrogate for applied power per unit of ventilated lung volume, accurately discriminated between low and high risk for weaning failure following prolonged mechanical ventilation.
Project description:Several single-center studies have evaluated the predictive performance of mechanical power (MP) on weaning outcomes in prolonged invasive mechanical ventilation (IMV) patients. The relationship between MP and weaning outcomes in all IMV patients has rarely been studied. A retrospective study was conducted on MIMIC-IV patients with IMV for more than 24 h to investigate the correlation between MP and weaning outcome using logistic regression model and subgroup analysis. The discriminative ability of MP, MP normalized to dynamic lung compliance (Cdyn-MP) and MP normalized to predicted body weight (PBW-MP) on weaning outcome were evaluated by analyzing the area under the receiver-operating characteristic (AUROC). Following adjustment for confounding factors, compared with the reference group, the Odds Ratio of weaning failure in the maximum MP, Cdyn-MP, and PBW-MP groups increased to 3.33 [95%CI (2.04-4.53), P < 0.001], 3.58 [95%CI (2.27-5.56), P < 0.001] and 5.15 [95%CI (3.58-7.41), P < 0.001], respectively. The discriminative abilities of Cdyn-MP (AUROC 0.760 [95%CI 0.745-0.776]) and PBW-MP (AUROC 0.761 [95%CI 0.744-0.779]) were higher than MP (AUROC 0.745 [95%CI 0.730-0.761]) (P < 0.05). MP is associated with weaning outcomes in IMV patients and is an independent predictor of the risk of weaning failure. Cdyn-MP and PBW-MP showed higher ability in weaning failure prediction than MP.
Project description:ObjectiveTo develop and validate a mechanical power (MP)-oriented prediction model of weaning failure in mechanically ventilated patients.DesignA retrospective cohort study.SettingData were collected from the large US Medical Information Mart for Intensive Care-IV (MIMIC-IV) V.1.0, which integrates comprehensive clinical data from 76 540 intensive care unit (ICU) admissions from 2008 to 2019.ParticipantsA total of 3695 patients with invasive mechanical ventilation for more than 24 hours and weaned with T-tube ventilation strategies were enrolled from the MIMIC-IV database.Primary and secondary outcomeWeaning failure.ResultsAll eligible patients were randomised into development cohorts (n=2586, 70%) and validation cohorts (n=1109, 30%). Multivariate logistic regression analysis of the development cohort showed that positive end-expiratory pressure, dynamic lung compliance, MP, inspired oxygen concentration, length of ICU stay and invasive mechanical ventilation duration were independent predictors of weaning failure. Calibration curves showed good correlation between predicted and observed outcomes. The prediction model showed accurate discrimination in the development and validation cohorts, with area under the receiver operating characteristic curve values of 0.828 (95% CI: 0.812 to 0.844) and 0.833 (95% CI: 0.809 to 0.857), respectively. Decision curve analysis indicated that the predictive model was clinically beneficial.ConclusionThe MP-oriented model of weaning failure accurately predicts the risk of weaning failure in mechanical ventilation patients and provides valuable information for clinicians making decisions on weaning.
Project description:In critically ill neurosurgical patients, delayed and premature extubation increases the risk of morbidity and mortality. Assessment of critically ill patients before and during spontaneous breathing trial (SBT) is crucial in predicting weaning failure. We explored the trend of changes with integrated lung and cardiac ultrasonography in predicting success of weaning in neurosurgical patients. Lung ultrasound and cardiac ultrasound was performed before and after 30 min and 120 min of SBT. Lung ultrasound score (LUS, range 0-36) was calculated using a predefined method of assessment of six chest regions on either side. The left ventricular function was evaluated by measuring fractional area change. The maximum velocities of mitral inflow E and A waves (E/A), deceleration time of E wave (DTE) and tissue doppler based E' wave at lateral annulus to calculate E/E', were measured to assess left ventricular filling pressure. Twenty seven patients underwent SBT, among these 22 had success and five had failure of SBT. The SBT failure group had higher baseline LUS and progressively higher LUS during SBT compared to the success group, suggesting significant lung de-recruitment. There was significant increase in the LV filling pressure (increase E/A and E/E', decrease in DTE) after 30 and 120 min of SBT in failure group compared to the success group. Point of care lung and cardiac ultrasonography may be useful in detecting cardiopulmonary changes induced by SBT. Higher lung aeration loss and LV filling pressure were observed with SBT failure group.
Project description:BackgroundMechanical power (MP) refers to the energy transmitted over time to the respiratory system and serves as a unifying determinant of ventilator-induced lung injury. MP normalization is required to account for developmental changes in children. We sought to examine the relationship between mechanical energy (MEBW), MP normalized to body weight (MPBW), and MP normalized to respiratory compliance (MPCRS) concerning the severity and outcomes of pediatric acute respiratory distress syndrome (pARDS).MethodIn this retrospective study, children aged 1 month to 18 years diagnosed with pARDS who underwent pressure-control ventilation for at least 24 h between January 2017 and September 2020 were enrolled. We calculated MP using Becher's equation. Multivariable logistic regression analysis adjusted for age, pediatric organ dysfunction score, and oxygenation index (OI) was performed to determine the independent association of MP and its derivatives 24 h after diagnosing pARDS with 28-day mortality. The association was also studied for 28 ventilator-free days (VFD-28) and the severity of pARDS in terms of OI.ResultsOut of 246 admitted with pARDS, 185 were eligible, with an overall mortality of 43.7%. Non-survivors exhibited higher severity of illness, as evidenced by higher values of MP, MPBW, and MEBW. Multivariable logistic regression analysis showed that only MEBW but not MP, MPBW, or MPCRS at 24 h was independently associated with mortality [adjusted OR: 1.072 (1.002-1.147), p = 0.044]. However, after adjusting for the type of pARDS, MEBW was not independently associated with mortality [adjusted OR: 1.061 (0.992-1.136), p = 0.085]. After adjusting for malnutrition, only MP at 24 h was found to be independently associated. Only MPCRS at 1-4 and 24 h but not MP, MPBW, or MEBW at 24 h of diagnosing pARDS was significantly correlated with VFD-28.ConclusionsNormalization of MP is better related to outcomes and severity of pARDS than non-normalized MP. Malnutrition can be a significant confounding factor in resource-limited settings.
Project description:The progression of acute respiratory distress syndrome (ARDS) from its onset due to disease or trauma to either recovery or death is poorly understood. Currently, there are no generally accepted treatments aside from supportive care using mechanical ventilation. However, this can lead to ventilator-induced lung injury (VILI), which contributes to a 30 to 40% mortality rate. In this study, we develop and demonstrate a technique to quantify forms of energy transport and dissipation during mechanical ventilation to directly evaluate their relationship to VILI. A porcine ARDS model was used, with ventilation parameters independently controlling lung overdistension and alveolar/airway recruitment/derecruitment (RD). Hourly measurements of airflow, tracheal and esophageal pressures, respiratory system impedance, and oxygen transport were taken for six hours following lung injury to track energy transfer and lung function. The final degree of injury was assessed histologically. Total and dissipated energies were quantified from lung pressure-volume relationships and subdivided into contributions from airflow, tissue viscoelasticity, and RD. Only RD correlated with physiologic recovery. Despite accounting for a very small fraction (2 to 5%) of the total energy dissipation, RD is damaging because it occurs quickly over a very small area. We estimate power intensity of RD energy dissipation to be 100 W/m2, equivalent to 10% of the Sun's luminance at the Earth's surface. Minimizing repetitive RD events may thus be crucial for mitigating VILI.
Project description:BackgroundMechanical power (MP) serves as a crucial predictive indicator for ventilator-induced lung injury and plays a pivotal role in tailoring the management of mechanical ventilation. However, its application across different diseases and stages remains nuanced.MethodsUsing AmsterdamUMCdb, we conducted a retrospective study to analyze the causal relationship between MP and outcomes of invasive mechanical ventilation, specifically SpO2/FiO2 ratio (P/F) and ventilator-free days at day 28 (VFD28). We employed causal inferential analysis with backdoor linear regression and double machine learning, guided by directed acyclic graphs, to estimate the average treatment effect (ATE) in the whole population and conditional average treatment effect (CATE) in the individual cohort. Additionally, to enhance interpretability and identify MP thresholds, we conducted a simulation analysis.ResultsIn the study, we included 11,110 unique admissions into analysis, of which 58.3% (6391) were surgical admissions. We revealed a negative and significant causal effect of median MP on VFD28, with estimated ATEs of -0.135 (95% confidence interval [CI]: -0.15 to -0.121). The similar effect was not observed in Maximal MP and minimal MP. The effect of MP was more pronounced in the medical subgroup, with a CATE of -0.173 (95% CI: -0.197 to -0.143) determined through backdoor linear regression. Patients with cardio, respiratory, and infection diagnoses, who required long-term intubation, sustained higher impact on CATEs across various admission diagnoses. Our simulations showed that there is no single MP threshold that can be applied to all patients, as the optimal threshold varies depending on the patient's condition.ConclusionOur study underscores the importance of tailoring MP adjustments on an individualized basis in ventilator management. This approach opens up new avenues for personalized treatment strategies and provides fresh insights into the real-time impact of MP in diverse clinical scenarios. It highlights the significance of median MP while acknowledging the absence of universally applicable thresholds.
Project description:BackgroundSeveral studies have assessed predictors of weaning and extubation outcome in short-term mechanically ventilated patients, but there are only few studies on predictors of weaning from prolonged mechanical ventilation.MethodsRetrospective, single-center, observational study at a specialized national weaning center in Germany. Patients' medical records were reviewed to obtain data on demographics, comorbidities, respiratory indices, and the result of a prospectively documented, standardized spontaneous breathing trial (SBT) upon admission to the weaning center. Respiratory indices assessed were the ventilatory ratio (VR) and parameters derived from calculated mechanical power (MP). Predictors associated with failure of prolonged weaning and failure of the SBT were assessed using a binary logistic regression model.ResultsA total of 263 prolonged mechanically ventilated, tracheotomized patients, treated over a 5-year period were analyzed. After 3 weeks of mechanical ventilation, patients with unsuccessful weaning failed a SBT more frequently and showed significantly increased values for inspiratory positive airway pressure, driving pressure, VR, absolute MP, and MP normalized to predicted body weight and dynamic lung-thorax compliance (LTC-MP). In the logistic regression analyses, variables independently correlated with weaning failure were female gender (adjusted odds ratio 0.532 [95% CI 0.291-0.973]; p = 0.040), obesity (body mass index ≥ 30 kg/m2) (2.595 [1.210-5.562]; p = 0.014), COPD (3.209 [1.563-6.589]; p = 0.002), LTC-MP (3.470 [1.067-11.284]; p = 0.039), PaCO2 on mechanical ventilation (1.101 [95% CI 1.034-1.173]; p = 0.003), and failure of the SBT (4.702 [2.250-9.825]; p < 0.001). In addition, female gender (0.401 [0.216-0.745]; p = 0.004), LTC-MP (3.017 [1.027-8.862]; p = 0.046), and PaCO2 on mechanical ventilation (1.157 [1.083-1.235]; p < 0.001) were independent risk factors for an unsuccessful SBT.ConclusionsIn the present study, the derived predictors of weaning point to a crucial role of the workload imposed on respiratory muscles during spontaneous breathing. Mechanical power normalized to lung-thorax compliance was independently correlated with weaning outcome and may identify patients at high risk for weaning failure.
Project description:BackgroundEvidence suggests differences in ventilation efficiency and respiratory mechanics between early COVID-19 pneumonia and classical acute respiratory distress syndrome (ARDS), as measured by established ventilatory indexes, such as the ventilatory ratio (VR; a surrogate of the pulmonary dead-space fraction) or mechanical power (MP; affected, e.g., by changes in lung-thorax compliance).ObjectivesThe aim of this study was to evaluate VR and MP in the late stages of the disease when patients are ready to be liberated from the ventilator after recovering from COVID-19 pneumonia compared to respiratory failures of other etiologies.DesignA retrospective observational cohort study of 249 prolonged mechanically ventilated, tracheotomized patients with and without COVID-19-related respiratory failure.MethodsWe analyzed each group's VR and MP distributions and trajectories [repeated-measures analysis of variance (ANOVA)] during weaning. Secondary outcomes included weaning failure rates between groups and the ability of VR and MP to predict weaning outcomes (using logistic regression models).ResultsThe analysis compared 53 COVID-19 cases with a heterogeneous group of 196 non-COVID-19 subjects. VR and MP decreased across both groups during weaning. COVID-19 patients demonstrated higher values for both indexes throughout weaning: median VR 1.54 versus 1.27 (p < 0.01) and MP 26.0 versus 21.3 Joule/min (p < 0.01) at the start of weaning, and median VR 1.38 versus 1.24 (p < 0.01) and MP 24.2 versus 20.1 Joule/min (p < 0.01) at weaning completion. According to the multivariable analysis, VR was not independently associated with weaning outcomes, and the ability of MP to predict weaning failure or success varied with lung-thorax compliance, with COVID-19 patients demonstrating consistently higher dynamic compliance along with significantly fewer weaning failures (9% versus 30%, p < 0.01).ConclusionCOVID-19 patients differed considerably in ventilation efficiency and respiratory mechanics among prolonged ventilated individuals, demonstrating significantly higher VRs and MP. The differences in MP were linked with higher lung-thorax compliance in COVID-19 patients, possibly contributing to the lower rate of weaning failures observed.