Project description:BackgroundVentilator-associated lower respiratory tract infection (VA-LRTI) is common among critically ill patients and has been associated with increased morbidity and mortality. In acute critical illness, respiratory microbiome disruption indices (MDIs) have been shown to predict risk for VA-LRTI, but their utility beyond the first days of critical illness is unknown. We sought to characterize how MDIs previously shown to predict VA-LRTI at initiation of mechanical ventilation change with prolonged mechanical ventilation, and if they remain associated with VA-LRTI risk.MethodsWe developed a cohort of 83 subjects admitted to a long-term acute care hospital due to their prolonged dependence on mechanical ventilation; performed dense, longitudinal sampling of the lower respiratory tract, collecting 1066 specimens; and characterized the lower respiratory microbiome by 16S rRNA sequencing as well as total bacterial abundance by 16S rRNA quantitative polymerase chain reaction.ResultsCross-sectional MDIs, including low Shannon diversity and high total bacterial abundance, were associated with risk for VA-LRTI, but associations had wide posterior credible intervals. Persistent lower respiratory microbiome disruption showed a more robust association with VA-LRTI risk, with each day of (base e) Shannon diversity <2.0 associated with a VA-LRTI odds ratio of 1.36 (95% credible interval, 1.10-1.72). The observed association was consistent across multiple clinical definitions of VA-LRTI.ConclusionsCross-sectional MDIs have limited ability to discriminate VA-LRTI risk during prolonged mechanical ventilation, but persistent lower respiratory tract microbiome disruption, best characterized by consecutive days with low Shannon diversity, may identify a population at high risk for infection and may help target infection-prevention interventions.
Project description:BackgroundRespiratory infectious complications remain a major cause of morbidity and mortality in children with hematological malignancies. Knowledge regarding the lung microbiome in aforementioned children is limited.MethodsA prospective cohort was conducted, enrolling 16 children with hematological malignancies complicated with moderate-to-severe lower respiratory tract infections (LRTIs) versus 21 LRTI children with age, gender, weight, and infection severity matched, with no underlying malignancies, to evaluate the lung microbiome from bronchoalveolar lavage fluid samples in different groups.ResultsThe lung microbiome from children with hematological malignancies and LRTIs showed obviously decreased α and β diversity; increased microbial function in infectious disease:bacteria/parasite; drug resistance:antimicrobial and human pathogenesis than the control group; a significantly reduced proportion of Firmicutes, Bacteroidota, Actinobacteriota; increased Proteobacteria at the phylum level; and distinctly elevated Parabacteroides, Klebsiella, Grimontia, Escherichia_Shigella, unclassified_Enterobacteriaceae at the genus level than the control group. Furthermore, it was revealed that α diversity (Shannon), β diversity (Bray-Curtis dissimilarity), Proteobacteria at the phylum level, and unclassified_Enterobacteriaceae and Escherichia_Shigella at the genus level were significantly negatively associated with hospitalization course whereas Firmicutes at the phylum level was established positively correlated with the hospitalization course.ConclusionsChildren with hematological malignancies and LRTIs showed obviously decreased α and β diversity, significantly increased function in infectious disease pathogenesis, antimicrobial drug resistance, and unfavorable environment tolerance. Moreover, α diversity (Shannon), β diversity (Bray-Curtis dissimilarity), and Proteobacteria may be used as negative correlated predictors for hospitalization course in these children whereas Firmicutes may be utilized as a positive correlated predictor.
Project description:Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs). For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.
Project description:Invasive tracheobronchial aspergillosis that is entirely limited or predominantly confined to tracheobronchial lesions is a relatively rare form of invasive pulmonary aspergillosis. Extended parenchymal opacities that are radiological manifestations of invasive aspergillosis sometimes occur following invasive tracheobronchial aspergillosis. However, it remains unclear whether or not invasive tracheobronchial aspergillosis is the initial stage of invasive pulmonary aspergillosis. A 61-year-old woman was admitted because of severe diarrhea and dehydration. Three days after admission, she complained of dyspnea. A computed tomography (CT) scan of the chest showed bronchial wall thickening. She developed respiratory failure despite antibiotic therapy. A CT scan showed obstructions of bronchial lumens and bronchiectasis in the right upper lobe. A spergillus fumigatus was identified from samples obtained in bronchoscopic examination. Bronchial lesions rapidly progressed to be extended. A spergillus infection with multiple parenchymal opacities was observed on CT scan. She responded to treatment with antifungal drugs.
Project description:BackgroundAlthough culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated.ResultsIn this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age.ConclusionsIn summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of the lung microbiome in chronic lung diseases.
Project description:The lung microbiome impacts on lung function, making any smoking-induced changes in the lung microbiome potentially significant. The complex co-occurrence and co-avoidance patterns between the bacterial taxa in the lower respiratory tract (LRT) microbiome were explored for a cohort of active (AS), former (FS) and never (NS) smokers. Bronchoalveolar lavages (BALs) were collected from 55 volunteer subjects (9 NS, 24 FS and 22 AS). The LRT microbiome composition was assessed using 16S rRNA amplicon sequencing. Identification of differentially abundant taxa and co-occurrence patterns, discriminant analysis and biomarker inferences were performed. The data show that smoking results in a loss in the diversity of the LRT microbiome, change in the co-occurrence patterns and a weakening of the tight community structure present in healthy microbiomes. The increased abundance of the genus Ralstonia in the lung microbiomes of both former and active smokers is significant. Partial least square discriminant and DESeq2 analyses suggested a compositional difference between the cohorts in the LRT microbiome. The groups were sufficiently distinct from each other to suggest that cessation of smoking may not be sufficient for the lung microbiota to return to a similar composition to that of NS. The linear discriminant analysis effect size (LEfSe) analyses identified several bacterial taxa as potential biomarkers of smoking status. Network-based clustering analysis highlighted different co-occurring and co-avoiding microbial taxa in the three groups. The analysis found a cluster of bacterial taxa that co-occur in smokers and non-smokers alike. The clusters exhibited tighter and more significant associations in NS compared to FS and AS. Higher degree of rivalry between clusters was observed in the AS. The groups were sufficiently distinct from each other to suggest that cessation of smoking may not be sufficient for the lung microbiota to return to a similar composition to that of NS.
Project description:Once an human immunodeficiency virus (HIV)-infected individual enters the onset period, a variety of opportunistic infections may occur, affecting various systems and organs throughout the body, due to the considerable reduction in the body's immune function. The objectives of this study were to explore the relationship between immune status and microbial communities in the lungs of individuals with HIV infection. A total of 88 patients with lung disease [80 (91%) HIV-positive and 8 (9%) HIV-negative] were enrolled in our study between January and July 2018, and 88 bronchoalveolar lavage fluid (BALF) samples were obtained during bronchoscopy. In this cross-sectional study, we investigated differences in the pulmonary microbiome of patients with HIV who had different immune statuses. The diversity of bacteria in the lungs of HIV-positive individuals was lower than that in HIV-negative individuals (p < 0.05). There was a significant difference in the composition and distribution of bacteria and fungi between the HIV-positive and HIV-negative groups (p < 0.01). The number of fungal species in the BALF of HIV-positive patients was higher than in HIV-negative patients. The diversity of bacteria and fungi in the BALF of HIV-positive patients increased with decreasing CD4 T-cell counts. Linear regression analysis showed that Pneumocystis (R 2 = 6.4e-03, p < 0.05), Cryptosphaeria (R 2 = 7.2e-01, p < 0.05), Candida (R 2 = 3.9e-02, p < 0.05), and Trichosporon (R 2 = 7.7e-01, p < 0.05) were negatively correlated with CD4 counts (F-test, p < 0.05). The samples collected from HIV-positive patients exhibited a different pattern relative to those from the HIV-negative group. Differences in host immune status cause differences in the diversity and structure of lower respiratory tract microorganisms.