Project description:For inhibitor design, as in most research, the best system is question dependent. We suggest structurally defined allostery to design specific inhibitors that target regions beyond active sites. We choose systems allowing efficient quality structures with conformational changes as optimal for structure-based design to optimize inhibitors. We maintain that evolutionarily related targets logically provide molecular avatars, where this Sanskrit term for descent includes ideas of functional relationships and of being a physical embodiment of the target's essential features without requiring high sequence identity. Appropriate biochemical and cell assays provide quantitative measurements, and for biomedical impacts, any inhibitor's activity should be validated in human cells. Specificity is effectively shown empirically by testing if mutations blocking target activity remove cellular inhibitor impact. We propose this approach to be superior to experiments testing for lack of cross-reactivity among possible related enzymes, which is a challenging negative experiment. As an exemplary avatar system for protein and DNA allosteric conformational controls, we focus here on developing separation-of-function inhibitors for meiotic recombination 11 nuclease activities. This was achieved not by targeting the active site but rather by geometrically impacting loop motifs analogously to ribosome antibiotics. These loops are neighboring the dimer interface and active site act in sculpting dsDNA and ssDNA into catalytically competent complexes. One of our design constraints is to preserve DNA substrate binding to geometrically block competing enzymes and pathways from the damaged site. We validate our allosteric approach to controlling outcomes in human cells by reversing the radiation sensitivity and genomic instability in BRCA mutant cells.
Project description:Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively.
Project description:The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.
Project description:Sae2 promotes the repair of DNA double-strand breaks in Saccharomyces cerevisiae The role of Sae2 is linked to the Mre11/Rad50/Xrs2 (MRX) complex, which is important for the processing of DNA ends into single-stranded substrates for homologous recombination. Sae2 has intrinsic endonuclease activity, but the role of this activity has not been assessed independently from its functions in promoting Mre11 nuclease activity. Here we identify and characterize separation-of-function mutants that lack intrinsic nuclease activity or the ability to promote Mre11 endonucleolytic activity. We find that the ability of Sae2 to promote MRX nuclease functions is important for DNA damage survival, particularly in the absence of Dna2 nuclease activity. In contrast, Sae2 nuclease activity is essential for DNA repair when the Mre11 nuclease is compromised. Resection of DNA breaks is impaired when either Sae2 activity is blocked, suggesting roles for both Mre11 and Sae2 nuclease activities in promoting the processing of DNA ends in vivo Finally, both activities of Sae2 are important for sporulation, indicating that the processing of meiotic breaks requires both Mre11 and Sae2 nuclease activities.
Project description:The repair of DNA double-strand breaks (DSBs) by homologous recombination is essential for genomic stability. The first step in this process is resection of 5' strands to generate 3' single-stranded DNA intermediates. Efficient resection in budding yeast requires the Mre11-Rad50-Xrs2 (MRX) complex and the Sae2 protein, although the role of MRX has been unclear because Mre11 paradoxically has 3'→5' exonuclease activity in vitro. Here we reconstitute resection with purified MRX, Sae2 and Exo1 proteins and show that degradation of the 5' strand is catalyzed by Exo1 yet completely dependent on MRX and Sae2 when Exo1 levels are limiting. This stimulation is mainly caused by cooperative binding of DNA substrates by Exo1, MRX and Sae2. This work establishes the direct role of MRX and Sae2 in promoting the resection of 5' strands in DNA DSB repair.
Project description:Mre11 is a versatile exo-/endonuclease involved in multiple aspects of DNA replication and repair, such as DSB end processing and checkpoint activation. We previously demonstrated that forced mitotic entry drives replisome disassembly at stalled replication forks in Xenopus egg extracts. Here, we examined the effects of various chemical inhibitors using this system and discovered a novel role of Mre11 exonuclease activity in promoting mitotic entry under replication stress. Mre11 activity was necessary for the initial progression of mitotic entry in the presence of stalled forks but unnecessary in the absence of stalled forks or after mitotic entry. In the absence of Mre11 activity, mitotic CDK was inactivated by Wee1/Myt1-dependent phosphorylation, causing mitotic exit. An inhibitor of Wee1/Myt1 or a nonphosphorylatable CDK1 mutant was able to partially bypass the requirement of Mre11 for mitotic entry. These results suggest that Mre11 exonuclease activity facilitates the processing of stalled replication forks upon mitotic entry, which attenuates the inhibitory pathways of mitotic CDK activation, leading to irreversible mitotic progression and replisome disassembly.
Project description:Mre11/Rad50 complexes in all organisms function in the repair of DNA double-strand breaks. In budding yeast, genetic evidence suggests that the Sae2 protein is essential for the processing of hairpin DNA intermediates and meiotic double-strand breaks by Mre11/Rad50 complexes, but the biochemical basis of this functional relationship is not known. Here we demonstrate that recombinant Sae2 binds DNA and exhibits endonuclease activity on single-stranded DNA independently of Mre11/Rad50 complexes, but hairpin DNA structures are cleaved cooperatively in the presence of Mre11/Rad50 or Mre11/Rad50/Xrs2. Hairpin structures are not processed at the tip by Sae2 but rather at single-stranded DNA regions adjacent to the hairpin. Truncation and missense mutants of Sae2 inactivate this endonuclease activity in vitro and fail to complement Deltasae2 strains in vivo for meiosis and recombination involving hairpin intermediates, suggesting that the catalytic activities of Sae2 are important for its biological functions.
Project description:Efficient cellular DNA replication requires the activity of a 5'-3' exonuclease. These enzymes are able to hydrolyze DNA.DNA and RNA.DNA substrates exonucleolytically, and they are structure-specific endonucleases. The 5'-3' exonucleases are conserved in organisms as diverse as bacteriophage and mammals. Crystal structures of three representative enzymes identify two divalent-metal-binding sites typically separated by 8-10 A. Site-directed mutagenesis was used to investigate the roles of three lysine residues (K83, K196, and K215) situated near two metal-binding sites in bacteriophage T5 5'-3' exonuclease. Neither K196 nor K215 was essential for either the exo- or the endonuclease activity, but mutation of these residues increased the dissociation constant for the substrate from 5 nM to 200 nM (K196A) and 50 nM (K215A). Biochemical analysis demonstrated that K83 is absolutely required for exonucleolytic activity on single-stranded DNA but is not required for endonucleolytic cleavage of flap structures. Structural analysis of this mutant by x-ray crystallography showed no significant perturbations around the metal-binding sites in the active site. The wild-type protein has different pH optima for endonuclease and exonuclease activities. Taken together, these results suggest that different mechanisms for endo- and exonucleolytic hydrolysis are used by this multifunctional enzyme.
Project description:The budding yeast Mre11-Rad50-Xrs2 (MRX) complex and Sae2 function together in DNA end resection during homologous recombination. Here we show that the Ku complex shields DNA ends from exonucleolytic digestion but facilitates endonucleolytic scission by MRX with a dependence on ATP and Sae2. The incision site is enlarged into a DNA gap via the exonuclease activity of MRX, which is stimulated by Sae2 without ATP being present. RPA renders a partially resected or palindromic DNA structure susceptible to MRX-Sae2, and internal protein blocks also trigger DNA cleavage. We present models for how MRX-Sae2 creates entry sites for the long-range resection machinery.
Project description:A novel endo-exonuclease, DmGEN (Drosophila Melanogaster XPG-like endonuclease), was identified in D.melanogaster. DmGEN is composed of five exons and four introns, and the open reading frame encodes a predicted product of 726 amino acid residues with a molecular weight of 82.5 kDa and a pI of 5.36. The gene locus on Drosophila polytene chromosomes was detected at 64C9 on the left arm of chromosome 3 as a single site. The encoded protein showed a relatively high degree of sequence homology with the RAD2 nucleases, especially XPG. Although the XPG-N- and XPG-I-domains are highly conserved in sequence, locations of the domains are similar to those of FEN-1 and EXO-1, and the molecular weight of the protein is close to that of EXO-1. In vitro, DmGEN showed endonuclease and 3'-5' exonuclease activities with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), but the endonuclease action with dsDNA was quite specific: 5'-3' exonuclease activity was found to occur with nicked DNA, while dsDNA was endonucleolytically cut at 3-4 bp from the 5' end. Homologs are widely found in mammals and higher plants. The data suggest that DmGEN belongs to a new class of RAD2 nuclease.