Project description:Currently, plant extract-mediated synthesized metal oxide nanoparticles (MO NPs) have played a substantial role in biological applications. Hence, this study focused on the eco-benign one-pot synthesis of bimetallic ZnO-CuO nanoparticles (ZC NPs) using the leaf extract of Artemisia abyssinica (LEAA) and evaluations of their anticancer, antioxidant, and molecular binding efficacy. The optical absorption peak at 380 nm from UV-visible (UV-vis) analysis revealed the formation of ZC NPs. X-ray diffraction (XRD) results revealed the fabrication of mixed-phase crystals with hexagonal and monoclinic structures of ZC NPs with an average crystallite size of 14 nm. Moreover, the biosynthesis of ZC NPs with a spherical morphology and an average particle size of 13.09 nm was confirmed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) results. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA/DTA) spectroscopy confirmed the involvement of functional groups from LEAA during the synthesis of ZC NPs. ZC NPs have exhibited the ferric ion reducing power (FRAP) with an absorbance of 1.826 ± 0.00 at 200 μg/mL and DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging activity of 95.71 ± 0.02% at 200 μg/mL with an IC50 value of 3.28 μg/mL. Moreover, ZC NPs had shown a promising in vitro anticancer activity of 89.20 ± 0.038 at 500 μg/mL with an IC50 value of 33.12 μg/mL against breast cancer (MCF-7) cell lines. Likewise, ZC NPs have shown strong binding affinity (-8.50 kcal/mol) against estrogen receptor α (ERα) in molecular docking simulations. These findings suggested that the biosynthesized ZC NPs could be used as promising antioxidant and anticancer drug candidates, particularly for breast cancer ailments. However, the in vivo cytotoxicity test will be recommended to ensure further use of ZC NPs.
Project description:The photodegradation of organic pollutants using metal oxide-based catalysts has drawn great attention as an effective method for wastewater treatment. In this study, zinc oxide nanoparticles (ZnO NPs) and zinc oxide/copper oxide nanocomposites (ZnO/CuO NCs) were fabricated using the leaf extract of Croton macrostachyus as a nontoxic, natural reducing and stabilizing agent. The synthesized samples were characterized by employing X-ray diffraction, microscopic, spectroscopic, and electrochemical methods. The results confirmed the successful synthesis of ZnO NPs and ZnO/CuO NCs with well-defined crystalline structures and morphologies. The prepared samples were tested for the photodegradation of methylene blue (MB) dye under visible light irradiation. Compared to ZnO NPs, ZnO/CuO NCs showed greatly improved photocatalytic performances, particularly with the sample prepared with the 20 mol % Cu precursor (97.02%). The enhancement could be related to the formed p-n heterojunction, which can suppress the recombination of charge carriers and extend the photoresponsive range. A theoretical study of the photocatalytic activity of ZnO/CuO NCs against MB dye degradation was also conducted by using COMSOL Multiphysics software. The results of the simulation are in reasonable agreement with those of the experiment. This study contributes to the development of sustainable and effective photocatalytic materials that are suitable for application in environmental remediation, particularly in the treatment of wastewater.
Project description:One of the major challenges of nano-biotechnology is to engineer potent antimicrobial nanostructures (NS) with high biocompatibility. Keeping this in view, we have performed aqueous olive leaf extract mediated one pot facile synthesis of CuO-NS and CeO2-NS. Prepared NS were homogenous, less than 26 nm in size, and small crystallite units as revealed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Fourier transform infrared spectroscopy (FTIR) of CuO-NS and CeO2-NS showed typical Cu-O prints around 592-660 cm-1 and Ce-O bond vibrations at 453 cm-1. The successful capping of CuO-NS and CeO2-NS by compounds present in the plant extract was further validated by high performance liquid chromatography (HPLC) and thermal gravimetric analysis (TGA). Active phyto-chemicals from the leaf extract simultaneously acted as strong reducing as well as capping agent in the NS synthesis. NS engineered in the present study showed antibacterial potential at extremely low concentration against highly virulent multidrug-resistant (MDR) gram-negative strains (Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Pseudomonas aeruginosa), alarmed by World Health Organization (WHO). Furthermore, CuO-NS and CeO2-NS did not show any cytotoxicity on HEK-293 cell lines and Brine shrimp larvae indicating that the NS green synthesized in the present study are biocompatible.
Project description:Disposal of agricultural waste has a negative impact on the environment and human health and may contribute to the greenhouse effect. The field of nanotechnology could provide alternative solutions to upcycle agricultural wastes in a safer manner into high-end value products. Organic waste from plants contain biomaterials that could serve as reducing and capping agents in the synthesis of nanomaterials with enhanced activities for use in biomedical and environmental applications. Persea americana (avocado) is a fruit with a high nutritional value; however, despite its rich phytochemical profile, its seed is often discarded as waste. Therefore, this study aimed to upcycle avocado seeds through the synthesis of gold nanoparticles (AuNPs) and evaluate their anticancer, antioxidant, and catalytic activities. The biosynthesis of avocado seed extract (AvoSE)-mediated AuNPs (AvoSE-AuNPs) was achieved following the optimization of various reaction parameters, including pH, temperature, extract, and gold salt concentrations. The AvoSE-AuNPs were poly-dispersed and anisotropic, with average core and hydrodynamic sizes of 14 ± 3.7 and 101.39 ± 1.4 nm, respectively. The AvoSE-AuNPs showed excellent antioxidant potential in terms of ferric reducing antioxidant power (343.88 ± 0.001 μmolAAE/L), 2,2-diphenyl-1-picrylhydrazyl (128.80 ± 0.0159 μmolTE/L), and oxygen radical absorbance capacity (1822.02 ± 12.6338 μmolTE/L); significantly reduced the viability of Caco-2 and PC-3 cells in a dose-dependent manner; and efficiently reduced 4-nitrophenol (4-NP) to 4-aminophenol. This study demonstrated how avocado seeds, an agricultural waste, can be used as sources of new bioactive materials for the synthesis of AuNPs, which have excellent antioxidant, anticancer, and catalytic activities, showing AvoSE-AuNPs' versatility in various applications. In addition, the AvoSE-AuNPs exhibited good stability and recyclability during the catalytic activity, which is significant because some of the primary issues with the use of metallic NPs as catalysts are around the cost-effectiveness, recovery, and reusability of the catalyst.
Project description:Polyphenols are natural biomolecules known for circumventing several diseases including cancer with little adverse effects. This study aimed to investigate the polyphenol enriched fractions from the leaf extract of Asystasia gangetica for their composition, biological activities such as antioxidant activity, haemolytic effects, and in vitro cytotoxicity against cancer cell lines. LC-MS/MS analysis of the enriched fractions identified a total of 35 distinct polyphenols with caffeic acid, luteolin, apigenin, and protocatechuic acid at higher concentrations. Fractions AG-3 and AG-4 exhibited the highest total antioxidant activity with higher concentration of phenolics and flavonoids. The AG-4 fraction had the highest levels of DPPH radical scavenging (IC50 = 32.74 µg mL-1) and ABTS radical scavenging (IC50 = 29.45 µg mL-1) activity, in addition to a modest iron chelating activity and reducing power. The fractions exhibited the least haemolytic activity. The cytotoxic potential of enriched fractions against the HCT-116, HeLa, PC-3, and HDF cell lines was further examined. While the extract showed no inhibitory effect on normal HDF cells, the cytotoxic activity of fractions on cell lines varied, with HCT-116 cells having the strongest anticancer activity with an IC50 of 43.82 µg mL-1. Additionally, fractions induced apoptotic activity in HCT-116 cells, resulting in cell cycle arrest at the G2M phase and an increase in sub-G0/G1 cells, with an IC50 of 13.54 µg mL-1 after 48 h of incubation. The in silico molecular docking of the active compounds against the TNIK receptor protein and ADMET (Absorption-Distribution-Metabolism-Excretion-Toxicity) characteristics are described. Overall, the study highlights the enhanced biological and antiproliferative activities of polyphenols in Asystasia gangetica leaf extract, which could be further utilized as a potential cancer treatment strategy.
Project description:Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 μg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.
Project description:Nowadays, nanoparticles such as gold nanoparticles (Au NPs) with specific biophysical characteristics have attracted remarkable attention as innovative options for the diagnosis and treatment of different diseases. In the present research, Au NPs were green synthesized using the Glaucium flavum leaf extract as an inexpensive and eco-friendly synthesis method. Then, the physicochemical properties were characterized by transmission electron microscopy (TEM), dynamic light scattering method (DLS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Ultraviolet-visible absorption spectroscopy (UV-Vis), Zeta potential, and Fourier transform infrared (FTIR) spectroscopy. Afterwards, the antioxidant capacity was tested and antiviral activity against influenza virus was evaluated by applying TCID50 and PCR assays. The nanoparticles cytotoxicity was tested using the MTT method. The shape and size of Au nanoparticles were modulated by varying leaf concentrations with face-centered cubic (FCC) structure. At higher concentrations, long-time stable spherical nanoparticles were obtained with a mean particle size of 32 nm and low aggregation degree that could simply combine with various bioactive compounds. The outcomes exhibited effective antiviral and antioxidant activities with low cytotoxicity and acceptable biocompatibility of green synthesized Au NPs. The aim of the present study was to develop a potentially environmentally friendly nanoplatform with excellent antiviral and antioxidant functions and acceptable biocompatibility for promising biomedical applications in the future.Supplementary informationThe online version contains supplementary material available at 10.1007/s13204-022-02705-1.
Project description:Dendropanax morbifera Léveille is an oriental medicinal plant that is traditionally used in folk medicine and grows in a specific region of South Korea. We aimed to enhance the utilization of D. morbifera medicinal plants for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). D. morbifera leaf extract acted as both a reducing and a stabilizing agent that rapidly synthesized Dendropanax AgNPs (D-AgNPs) and Dendropanax AuNPs (D-AuNPs). The D-AgNPs and D-AuNPs were characterized by ultraviolet-visible spectroscopy, energy dispersive X-ray analysis, elemental mapping, field emission transmission electron microscopy, X-ray diffraction, and dynamic light scattering. The characterizations revealed that the D-AgNPs and D-AuNPs were in polygon and hexagon shapes with average sizes of 100-150 nm and 10-20 nm, respectively. The important outcomes were the synthesis of AgNPs and AuNPs within 1 hour and 3 minutes, respectively, avoiding the subsequent processing for removal of any toxic components or for stabilizing the nanoparticles. Additionally, D-AgNPs and D-AuNPs were examined for cytotoxicity in a human keratinocyte cell line and in A549 human lung cancer cell line. The results indicated that D-AgNPs exhibited less cytotoxicity in the human keratinocyte cell line at 100 µg/mL after 48 hours. On the other hand, D-AgNPs showed potent cytotoxicity in the lung cancer cells at the same concentration after 48 hours, whereas D-AuNPs did not exhibit cytotoxicity in both cell lines at the same concentration. However, both D-AgNPs and D-AuNPs at 50 µg/mL enhanced the cytotoxicity of ginsenoside compound K at 25 µM after 48 hours of treatment compared with CK alone. We believe that this rapid green synthesis of D-AgNPs and D-AuNPs is a valuable addition to the applications of D. morbifera medicinal plant. D-AuNPs can be used as carriers for drug delivery and in cancer therapy due to their lack of normal cell cytotoxicity.
Project description:Steering the selectivity of electrocatalysts toward the desired product is crucial in the electrochemical reduction of CO2. A promising approach is the electronic modification of the catalyst's active phase. In this work, we report on the electronic modification effects on CuO-ZnO-derived electrocatalysts synthesized via hydrothermal synthesis. Although the synthesis method yields spatially separated ZnO nanorods and distinct CuO particles, strong restructuring and intimate atomic mixing occur under the reaction conditions. This leads to interactions that have a profound effect on the catalytic performance. Specifically, all of the bimetallic electrodes outperformed the monometallic ones (ZnO and CuO) in terms of activity for CO production. Surprisingly, on the other hand, the presence of ZnO suppresses the formation of ethylene on Cu, while the presence of Cu improves CO production of ZnO. In situ X-ray absorption spectroscopy studies revealed that this catalytic effect is due to enhanced reducibility of ZnO by Cu and stabilization of cationic Cu species by the intimate contact with partially reduced ZnO. This suppresses ethylene formation while favoring the production of H2 and CO on Cu. These results show that using mixed metal oxides with different reducibilities is a promising approach to alter the electronic properties of electrocatalysts (via stabilization of cationic species), thereby tuning the electrocatalytic CO2 reduction reaction performance.