Project description:Plant architecture involves important agronomic traits affecting crop yield, resistance to lodging, and fitness for mechanical harvesting in Brassica napus. Breeding high-yield varieties with plant architecture suitable for mechanical harvesting is the main goal of rapeseed breeders. Here, we report an accession of B. napus (4942C-5), which has a dwarf and compact plant architecture in contrast to cultivated varieties. A BC8 population was constructed by crossing a normal plant architecture line, 8008, with the recurrent parent 4942C-5. To investigate the molecular mechanisms underlying plant architecture, we performed phytohormone profiling, bulk segregant analysis sequencing (BSA-Seq), and RNA sequencing (RNA-Seq) in BC8 plants with contrasting plant architecture. Genetic analysis indicated the plant architecture traits of 4942C-5 were recessive traits controlled by multiple genes. The content of auxin (IAA), gibberellin (GA), and abscisic acid (ABA) differed significantly between plants with contrasting plant architecture in the BC8 population. Based on BSA-Seq analysis, we identified five candidate intervals on chromosome A01, namely those of 0 to 6.33 Mb, 6.45 to 6.48 Mb, 6.51 to 6.53 Mb, 6.77 to 6.79 Mb, and 7 to 7.01 Mb regions. The RNA-Seq analysis revealed a total of 4378 differentially expressed genes (DEGs), of which 2801 were up-regulated and 1577 were down-regulated. There, further analysis showed that genes involved in plant hormone biosynthesis and signal transduction, cell structure, and the phenylpropanoid pathway might play a pivotal role in the morphogenesis of plant architecture. Association analysis of BSA-Seq and RNA-Seq suggested that seven DEGs involved in plant hormone signal transduction and a WUSCHEL-related homeobox (WOX) gene (BnaA01g01910D) might be candidate genes responsible for the dwarf and compact phenotype in 4942C-5. These findings provide a foundation for elucidating the mechanisms underlying rapeseed plant architecture and should contribute to breed new varieties suitable for mechanization.
Project description:Rapeseed has the ability to absorb cadmium in the roots and transfer it to aboveground organs, making it a potential species for remediating soil cadmium (Cd) pollution. However, the genetic and molecular mechanisms underlying this phenomenon in rapeseed are still unclear. In this study, a 'cadmium-enriched' parent, 'P1', with high cadmium transport and accumulation in the shoot (cadmium root: shoot transfer ratio of 153.75%), and a low-cadmium-accumulation parent, 'P2', (with a cadmium transfer ratio of 48.72%) were assessed for Cd concentration using inductively coupled plasma mass spectrometry (ICP-MS). An F2 genetic population was constructed by crossing 'P1' with 'P2' to map QTL intervals and underlying genes associated with cadmium enrichment. Fifty extremely cadmium-enriched F2 individuals and fifty extremely low-accumulation F2 individuals were selected based on cadmium content and cadmium transfer ratio and used for bulk segregant analysis (BSA) in combination with whole genome resequencing. This generated a total of 3,660,999 SNPs and 787,034 InDels between these two segregated phenotypic groups. Based on the delta SNP index (the difference in SNP frequency between the two bulked pools), nine candidate Quantitative trait loci (QTLs) from five chromosomes were identified, and four intervals were validated. RNA sequencing of 'P1' and 'P2' in response to cadmium was also performed and identified 3502 differentially expressed genes (DEGs) between 'P1' and 'P2' under Cd treatment. Finally, 32 candidate DEGs were identified within 9 significant mapping intervals, including genes encoding a glutathione S-transferase (GST), a molecular chaperone (DnaJ), and a phosphoglycerate kinase (PGK), among others. These genes are strong candidates for playing an active role in helping rapeseed cope with cadmium stress. Therefore, this study not only sheds new light on the molecular mechanisms of Cd accumulation in rapeseed but could also be useful for rapeseed breeding programs targeting this trait.
Project description:Plant height, as a crucial component of plant architecture, exerts a significant influence on rapeseed (Brassica napus L.) lodging resistance, photosynthetic efficiency, yield, and mechanized harvest level. A previous study identified dwarf rapeseed LSW2018. In this study, LSW2018 (dwarf parent (PD)) was crossed with 389 (high parent (PH)) to establish the F2 population, and 30 extremely dwarf (bulk-D) and high (bulk-H) plants in the F2 population were respectively selected to construct two bulked DNA pools. Whole-genome sequencing and variation analysis (BSA-seq) were performed on these four DNA pools (PD, PH, bulk-D, and bulk-H). The BSA-seq results revealed that the genomic region responsible for the dwarf trait spanned from 19.30 to 22.19 Mb on chromosome A03, with a length of 2.89 Mb. After fine mapping with simple sequence repeat (SSR) markers, the gene was narrowed to a 0.71 Mb interval. Within this region, a total of 113 genes were identified, 42 of which contained large-effect variants. According to reference genome annotation and qRT-PCR analysis, there are 17 differentially expressed genes in this region between high and dwarf individuals. This study preliminarily reveals the genetic basis of LSW2018 dwarfing and provides a theoretical foundation for the molecular marker-assisted breeding of dwarf rapeseed.
Project description:Plant height (PH) is a critical agronomic trait in Brassica napus, significantly impacting yield. Consequently, identifying genes associated with plant height is a pivotal objective in oilseed rape breeding. This study employed a combination of bulk segregant analysis sequencing (BSA-seq) and RNA sequencing (RNA-seq) for analysis. A novel quantitative trait locus (QTL), qPH_C02, was identified between 63,989,634 and 64,945,122 bp on chromosome C02, from which eight candidate genes were screened. The Gene Ontology (GO) analysis revealed enrichment in peroxisomes, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated enrichment in the oxidative phosphorylation (OP) pathway. It is hypothesized that the observed differences in plant height and silique length may be attributed to the regulation of peroxidase activity in the OP pathway, which in turn alters plant energy metabolism and controls nutrient uptake. Subsequently, we will further test this hypothesis. The results of this study will contribute to our understanding of the genetic basis for differences in plant height and provide a foundation for the selection and breeding of Brassica napus varieties with desired plant shapes.
Project description:BackgroundBrassica napus is an important oilseed crop. Dissection of the genetic architecture underlying oil-related biological processes will greatly facilitates the genetic improvement of rapeseed. The differential gene expression during pod development offers a snapshot on the genes responsible for oil accumulation in. To identify candidate genes in the linkage peaks reported previously, we used RNA sequencing (RNA-Seq) technology to analyze the pod transcriptomes of German cultivar Sollux and Chinese inbred line Gaoyou.MethodsThe RNA samples were collected for RNA-Seq at 5-7, 15-17 and 25-27 days after flowering (DAF). Bioinformatics analysis was performed to investigate differentially expressed genes (DEGs). Gene annotation analysis was integrated with QTL mapping and Brassica napus pod transcriptome profiling to detect potential candidate genes in oilseed.ResultsFour hundred sixty five and two thousand, one hundred fourteen candidate DEGs were identified, respectively, between two varieties at the same stages and across different periods of each variety. Then, 33 DEGs between Sollux and Gaoyou were identified as the candidate genes affecting seed oil content by combining those DEGs with the quantitative trait locus (QTL) mapping results, of which, one was found to be homologous to Arabidopsis thaliana lipid-related genes.DiscussionIntervarietal DEGs of lipid pathways in QTL regions represent important candidate genes for oil-related traits. Integrated analysis of transcriptome profiling, QTL mapping and comparative genomics with other relative species leads to efficient identification of most plausible functional genes underlying oil-content related characters, offering valuable resources for bettering breeding program of Brassica napus.ConclusionsThis study provided a comprehensive overview on the pod transcriptomes of two varieties with different oil-contents at the three developmental stages.
Project description:IntroductionBrassica juncea is a major oilseed crop of Brassica. The seed weight is one of yield components in oilseed Brassica crops. Research on the genetic mechanism of seed weight is not only directly related to the yield and economic value of Brassica juncea but also can provide a theory foundation for studying other Brassica crops.MethodsTo map the genes for seed weight, the parental and F2 extreme bulks derived were constructed from the cross between the heavy-seeded accession 7981 and the light-seeded one Sichuan yellow (SY) of B. juncea, and used in bulk segregant sequencing (BSA-seq). Meanwhile, RNA-sequencing (RNA-seq) was performed for both parents at six seed development stages.ResultsOur results showed that a total of thirty five SNPs were identified in thirty two genes located on chromosomes A02 and A10, while fifty eight InDels in fifty one genes located on A01, A03, A05, A07, A09, A10, B01, B02 and B04. The 7,679 differentially expressed genes were identified in developing seeds between the parents. Furthermore, integrated analysis of BSA-seq and RNA-seq data revealed a cluster of nine genes on chromosome A10 and one gene on chromosome A05 that are putative candidate genes controlling seed weight in B. juncea.DiscussionThis study provides a new reference for research on Brassica seed weight and lays a solid foundation for the examination of seed in other Brassica crops.
Project description:It revealed that DEGs associated with floral development, including BnaC06.ARGOS, BnaC09.BPE, BnaA03.AUX1 and BnaAP2, and BnaC05.ERS2 involved in ethylene signalling potentially contribute to the double flower trait in B. napus.
Project description:Inheritable albino mutants are excellent models for exploring the mechanism of chloroplast biogenesis and development. However, only a few non-lethal albino mutations have been reported to date in Brassica species. Here, we describe a resynthesized Brassica napus mutant, whose leaf, stem, and silique tissues showed an inheritable albino phenotype under field conditions after the bud stage but green phenotype in the greenhouse during the whole growing season, indicating that the albino phenotype depends on environmental conditions. Compared with the green leaves of the field-grown wild-type (GL) and greenhouse-grown mutant (WGL) plants, white leaves of the field-grown mutant (WL) showed significantly lower chlorophyll contents and structural defects in chloroplasts. Genetic analysis revealed that the albino phenotype of WL is recessive and is controlled by multiple genes. Bulk segregant analysis-sequencing (BSA-Seq) indicated that the candidate regions responsible for the albino phenotype spanned a total physical distance of approximately 49.68 Mb on chromosomes A03, A07, A08, C03, C04, C06, and C07. To gain insights into the molecular mechanisms that control chloroplast development in B. napus, we performed transcriptome (RNA-Seq) analysis of GL, WGL, and WL samples. GO and KEGG enrichment analyses suggested that differentially expressed genes (DEGs) associated with leaf color were significantly enriched in photosynthesis, ribosome biogenesis and chlorophyll metabolism. Further analysis indicated that DEGs involved in chloroplast development and chlorophyll metabolism were likely the main factors responsible for the albino phenotype in B. napus. A total of 59 DEGs were screened in the candidate regions, and four DEGs (BnaC03G0522600NO, BnaC07G0481600NO, BnaC07G0497800NO, and BnaA08G0016300NO) were identified as the most likely candidates responsible for the albino phenotype. Altogether, this study provides clues for elucidating the molecular mechanisms underlying chloroplast development in B. napus.
Project description:Seed weight is a critical and direct trait for oilseed crop seed yield. Understanding its genetic mechanism is of great importance for yield improvement in Brassica napus breeding. Two hundred and fifty doubled haploid lines derived by microspore culture were developed from a cross between a large-seed line G-42 and a small-seed line 7-9. According to the 1000-seed weight (TSW) data, the individual DNA of the heaviest 46 lines and the lightest 47 lines were respectively selected to establish two bulked DNA pools. A new high-throughput sequencing technology, Specific Locus Amplified Fragment Sequencing (SLAF-seq), was used to identify candidate genes of TSW in association analysis combined with bulked segregant analysis (BSA). A total of 1,933 high quality polymorphic SLAF markers were developed and 4 associated markers of TSW were procured. A hot region of ~0.58 Mb at nucleotides 25,401,885-25,985,931 on ChrA09 containing 91 candidate genes was identified as tightly associated with the TSW trait. From annotation information, four genes (GSBRNA2T00037136001, GSBRNA2T00037157001, GSBRNA2T00037129001 and GSBRNA2T00069389001) might be interesting candidate genes that are highly related to seed weight.