Project description:Protein language models (pLMs) have emerged as potent tools for predicting and designing protein structure and function, and the degree to which these models fundamentally understand the inherent biophysics of protein structure stands as an open question. Motivated by a finding that pLM-based structure predictors erroneously predict nonphysical structures for protein isoforms, we investigated the nature of sequence context needed for contact predictions in the pLM Evolutionary Scale Modeling (ESM-2). We demonstrate by use of a "categorical Jacobian" calculation that ESM-2 stores statistics of coevolving residues, analogously to simpler modeling approaches like Markov Random Fields and Multivariate Gaussian models. We further investigated how ESM-2 "stores" information needed to predict contacts by comparing sequence masking strategies, and found that providing local windows of sequence information allowed ESM-2 to best recover predicted contacts. This suggests that pLMs predict contacts by storing motifs of pairwise contacts. Our investigation highlights the limitations of current pLMs and underscores the importance of understanding the underlying mechanisms of these models.
Project description:Self-supervised neural language models with attention have recently been applied to biological sequence data, advancing structure, function and mutational effect prediction. Some protein language models, including MSA Transformer and AlphaFold's EvoFormer, take multiple sequence alignments (MSAs) of evolutionarily related proteins as inputs. Simple combinations of MSA Transformer's row attentions have led to state-of-the-art unsupervised structural contact prediction. We demonstrate that similarly simple, and universal, combinations of MSA Transformer's column attentions strongly correlate with Hamming distances between sequences in MSAs. Therefore, MSA-based language models encode detailed phylogenetic relationships. We further show that these models can separate coevolutionary signals encoding functional and structural constraints from phylogenetic correlations reflecting historical contingency. To assess this, we generate synthetic MSAs, either without or with phylogeny, from Potts models trained on natural MSAs. We find that unsupervised contact prediction is substantially more resilient to phylogenetic noise when using MSA Transformer versus inferred Potts models.
Project description:MotivationLanguage models are routinely used for text classification and generative tasks. Recently, the same architectures were applied to protein sequences, unlocking powerful new approaches in the bioinformatics field. Protein language models (pLMs) generate high-dimensional embeddings on a per-residue level and encode a "semantic meaning" of each individual amino acid in the context of the full protein sequence. These representations have been used as a starting point for downstream learning tasks and, more recently, for identifying distant homologous relationships between proteins.ResultsIn this work, we introduce a new method that generates embedding-based protein sequence alignments (EBA) and show how these capture structural similarities even in the twilight zone, outperforming both classical methods as well as other approaches based on pLMs. The method shows excellent accuracy despite the absence of training and parameter optimization. We demonstrate that the combination of pLMs with alignment methods is a valuable approach for the detection of relationships between proteins in the twilight-zone.Availability and implementationThe code to run EBA and reproduce the analysis described in this article is available at: https://git.scicore.unibas.ch/schwede/EBA and https://git.scicore.unibas.ch/schwede/eba_benchmark.
Project description:Protein structure prediction has been greatly improved by deep learning in the past few years. However, the most successful methods rely on multiple sequence alignment (MSA) of the sequence homologs of the protein under prediction. In nature, a protein folds in the absence of its sequence homologs and thus, a MSA-free structure prediction method is desired. Here, we develop a single-sequence-based protein structure prediction method RaptorX-Single by integrating several protein language models and a structure generation module and then study its advantage over MSA-based methods. Our experimental results indicate that in addition to running much faster than MSA-based methods such as AlphaFold2, RaptorX-Single outperforms AlphaFold2 and other MSA-free methods in predicting the structure of antibodies (after fine-tuning on antibody data), proteins of very few sequence homologs, and single mutation effects. By comparing different protein language models, our results show that not only the scale but also the training data of protein language models will impact the performance. RaptorX-Single also compares favorably to MSA-based AlphaFold2 when the protein under prediction has a large number of sequence homologs.
Project description:Strong DNA conservation among divergent species is an indicator of enduring functionality. With weaker sequence conservation we enter a vast 'twilight zone' in which sequence subject to transient or lower constraint cannot be distinguished easily from neutrally evolving, non-functional sequence. Twilight zone functional sequence is illuminated instead by principles of selective constraint and positive selection using genomic data acquired from within a species' population. Application of these principles reveals that despite being biochemically active, most twilight zone sequence is not functional.
Project description:MotivationThe detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this work, we explore the applicability of protein language models to this task.ResultsWe introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations (embeddings) derived from a protein language model, ProtT5. Our benchmarks reveal that pLM-BLAST maintains a level of accuracy on par with HHsearch for both highly similar sequences (with >50% identity) and markedly divergent sequences (with <30% identity), while being significantly faster. Additionally, pLM-BLAST stands out among other embedding-based tools due to its ability to compute local alignments. We show that these local alignments, produced by pLM-BLAST, often connect highly divergent proteins, thereby highlighting its potential to uncover previously undiscovered homologous relationships and improve protein annotation.Availability and implementationpLM-BLAST is accessible via the MPI Bioinformatics Toolkit as a web server for searching precomputed databases (https://toolkit.tuebingen.mpg.de/tools/plmblast). It is also available as a standalone tool for building custom databases and performing batch searches (https://github.com/labstructbioinf/pLM-BLAST).
Project description:Deep generative models of molecules have grown immensely in popularity, trained on relevant datasets, these models are used to search through chemical space. The downstream utility of generative models for the inverse design of novel functional compounds, depends on their ability to learn a training distribution of molecules. The most simple example is a language model that takes the form of a recurrent neural network and generates molecules using a string representation. Since their initial use, subsequent work has shown that language models are very capable, in particular, recent research has demonstrated their utility in the low data regime. In this work, we investigate the capacity of simple language models to learn more complex distributions of molecules. For this purpose, we introduce several challenging generative modeling tasks by compiling larger, more complex distributions of molecules and we evaluate the ability of language models on each task. The results demonstrate that language models are powerful generative models, capable of adeptly learning complex molecular distributions. Language models can accurately generate: distributions of the highest scoring penalized LogP molecules in ZINC15, multi-modal molecular distributions as well as the largest molecules in PubChem. The results highlight the limitations of some of the most popular and recent graph generative models- many of which cannot scale to these molecular distributions.
Project description:Inferring evolutionary relationships among highly divergent protein sequences is a daunting task. In particular, when pairwise sequence alignments between protein sequences fall <25% identity, the phylogenetic relationships among sequences cannot be estimated with statistical certainty. Here, we show that phylogenetic profiles generated with the Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) are capable of deriving, ab initio, phylogenetic relationships for highly divergent proteins in a quantifiable and robust manner. Notably, the results from our computational case study of the highly divergent family of retroelements accord with previous estimates of their evolutionary relationships. Taken together, these data demonstrate that GDDA-BLAST provides an independent and powerful measure of evolutionary relationships that does not rely on potentially subjective sequence alignment. We demonstrate that evolutionary relationships can be measured with phylogenetic profiles, and therefore propose that these measurements can provide key insights into relationships among distantly related and/or rapidly evolving proteins.
Project description:BackgroundCurrent protein family modeling methods like profile Hidden Markov Model (pHMM), k-mer based methods, and deep learning-based methods do not provide very accurate protein function prediction for proteins in the twilight zone, due to low sequence similarity to reference proteins with known functions.ResultsWe present a novel method EnsembleFam, aiming at better function prediction for proteins in the twilight zone. EnsembleFam extracts the core characteristics of a protein family using similarity and dissimilarity features calculated from sequence homology relations. EnsembleFam trains three separate Support Vector Machine (SVM) classifiers for each family using these features, and an ensemble prediction is made to classify novel proteins into these families. Extensive experiments are conducted using the Clusters of Orthologous Groups (COG) dataset and G Protein-Coupled Receptor (GPCR) dataset. EnsembleFam not only outperforms state-of-the-art methods on the overall dataset but also provides a much more accurate prediction for twilight zone proteins.ConclusionsEnsembleFam, a machine learning method to model protein families, can be used to better identify members with very low sequence homology. Using EnsembleFam protein functions can be predicted using just sequence information with better accuracy than state-of-the-art methods.