Project description:Osteoprotegerin (OPG) is a secreted member of the tumor necrosis factor (TNF) receptor superfamily that has been well characterized as a negative regulator of bone remodeling. OPG is also expressed in human breast cancer tissues and cell lines. In vitro studies suggest that OPG exerts tumor-promoting effects by binding to TNF-related apoptosis inducing ligand (TRAIL), thereby preventing induction of apoptosis. However, the in vivo effect of OPG expression by primary breast tumors has not been characterized. We knocked down OPG expression in MDA-MB-231 and MDA-MB-436 human breast cancer cells using shRNA and siRNA to investigate impact on metastasis in the chick embryo model. We observed a reduction in metastasis with OPG knockdown cells. We found that lowering OPG expression did not alter sensitivity to TRAIL-induced apoptosis; however, the OPG knockdown cells had a reduced level of invasion. In association with this we observed reduced expression of the proteases Cathepsin D and Matrix Metalloproteinase-2 upon OPG knockdown, indicating that OPG may promote metastasis via modulation of protease expression and invasion. We conclude that OPG has a metastasis-promoting effect in breast cancer cells.
Project description:Chemoresistance remains a major obstacle to successful treatment of breast cancer. Although soluble tumor necrosis factor-α (sTNF-α) has been implicated in mediating drug-resistance in human cancers, whether transmembrane tumor necrosis factor-α (tmTNF-α) plays a role in chemoresistance remains unclear. Here we found that over 50% of studied patients expressed tmTNF-α at high levels in breast cancer tissues and tmTNF-α expression positively correlated with resistance to anthracycline chemotherapy. Alteration of tmTNF-α expression changed the sensitivity of primary human breast cancer cells and breast cancer cell lines to doxorubicin (DOX). Overexpression of N-terminal fragment (NTF) of tmTNF-α, a mutant form with intact intracellular domain of tmTNF-α to transmit reverse signals, induced DOX-resistance. Mechanistically, the tmTNF-α/NTF-ERK-GST-π axis and tmTNF-α/NTF-NF-κB-mediated anti-apoptotic functions were required for tmTNF-α-induced DOX-resistance. In a xenograft mouse model, the combination of tmTNF-α suppression with chemotherapy significantly enhanced the efficacy of DOX. Our data indicate that tmTNF-α mediates DOX-resistance through reverse signaling and targeting tmTNF-α may be beneficial for the treatment of DOX-resistant breast cancer.
Project description:Estrogen and estrogen receptor alpha (ERα)-induced gene transcription is tightly associated with ERα-positive breast carcinogenesis. ERα-occupied enhancers, particularly super-enhancers, have been suggested to play a vital role in regulating such transcriptional events. However, the landscape of ERα-occupied super-enhancers (ERSEs) as well as key ERα-induced target genes associated with ERSEs remain to be fully characterized. Here, we defined the landscape of ERSEs in ERα-positive breast cancer cell lines, and demonstrated that bromodomain protein BRD4 is a master regulator of the transcriptional activation of ERSEs and cognate ERα target genes. RET, a member of the tyrosine protein kinase family of proteins, was identified to be a key ERα target gene of BRD4-regulated ERSEs, which, in turn, is vital for ERα-induced gene transcriptional activation and malignant phenotypes through activating the RAS/RAF/MEK2/ERK/p90RSK/ERα phosphorylation cascade. Combination therapy with BRD4 and RET inhibitors exhibited additive effects on suppressing ERα-positive breast cancer both in vitro and in vivo, comparable with that of standard endocrine therapy tamoxifen. Furthermore, combination therapy re-sensitized a tamoxifen-resistant ERα-positive breast cancer cell line to tamoxifen treatment. Taken together, our data uncovered the critical role of a super-enhancer-associated positive feedback loop constituting BRD4/ERα-RET-ERα in ERα-positive breast cancer, and suggested that targeting components in this loop would provide a new therapeutic avenue for treating ERα-positive breast cancer in the clinic.
Project description:The majorities of colorectal cancer (CRC) cases are sporadic in origin and a large proportion of etiologies are associated with environmental stress responses. In response to external and internal stress, the ribosome stands sentinel and stress-driven ribosomal dysfunction triggers the cellular decision pathways via transcriptional reprogramming. In the present study, PR domain zinc finger protein (PRDM) 1, a master transcriptional regulator, was found to be closely associated with ribosomal actions in patients with CRC and the murine models. Stress-driven ribosomal dysfunction enhanced PRDM1 levels in intestinal cancer cells, which contributed to their survival and enhanced cancer cell stemness against cancer treatment. Mechanistically, PRDM1 facilitated clustering modulation of insulin-like growth factor (IGF) receptor-associated genes, which supported cancer cell growth and stemness-linked features. Ribosomal dysfunction-responsive PRDM1 facilitated signaling remodeling for the survival of tumor progenitors, providing compelling evidence for the progression of sporadic CRC.
Project description:Breast cancer (BC) continues to be the most frequently diagnosed cancer in American women, which disproportionately affects women of African-American (AA) descent. Previously, we reported greater serum levels of resistin in AA BC patients relative to Caucasian-American (CA) patients, and established its role in growth and aggressiveness of breast tumor cells. Here we have investigated the role of resistin in BC-chemoresistance. MDA-MB-231 and MDA-MB-468 BC cells of CA and AA origin, respectively, were incubated with resistin prior to doxorubicin treatment. Our data suggest that resistin conferred chemoresistance to both BC cell lines; however, the effect on AA cells was more profound. Furthermore, the resistin-induced doxorubicin-resistance was shown to occur due to suppression of apoptosis. Resistin treatment also affected the stemness of BC cells, as suggested by reduced cell surface expression of CD24, induced expression of CD44 and ALDH1, and increased capability of cells to form mammospheres. Mechanistic studies revealed that resistin-induced chemoresistance, apoptosis and stemness of BC cells were mediated through STAT3 activation. Taken together, our findings provide novel insight into the role of resistin in BC biology, and strengthen its role in racially disparate clinical outcomes.
Project description:Objectives: Triple negative breast cancer (TNBC) is a subtype of breast cancer with stronger invasion and metastasis, but its specific mechanism of action is still unclear. Tuft1 plays an important regulatory role in the survival of breast cancer cells; however, its role in regulating TNBC metastatic potential has not been well-characterized. Our aim was therefore to systematically study the mechanism of TUFT1 in the metastasis, stemness, and chemoresistance of TNBC and provide new predictors and targets for BC treatment. Methods: We used western blotting and IHC to measure TUFT1and Rac1-GTP expression levels in both human BC samples and cell lines. A combination of shRNA, migration/invasion assays, sphere formation assay, apoptosis assays, nude mouse xenograft tumor model, and GTP activity assays was used for further mechanistic studies. Results: We demonstrated that silencing TUFT1 in TNBC cells significantly inhibited cell metastasis and stemness in vitro. A nude mouse xenograft tumor model revealed that TUFT1 knockdown greatly decreased spontaneous lung metastasis of TNBC tumors. Mechanism studies showed that TUFT1 promoted tumor cell metastasis and stemness by up-regulating the Rac1/β-catenin pathway. Moreover, mechanistic studies indicated that the lack of TUFT1 expression in TNBC cells conferred more sensitive to chemotherapy and increased cell apoptosis via down-regulating the Rac1/β-catenin signaling pathway. Further, TUFT1 expression positively correlated with Rac1-GTP in TNBC samples, and co-expression of TUFT1 and Rac1-GTP predicted poor prognosis in TNBC patients who treated with chemotherapy. Conclusion: Our findings suggest that TUFT1/Rac1/β-catenin pathway may provide a potential target for more effective treatment of TNBC.
Project description:Background: Some stemness-associated transcription factors consistently play essential roles in the maintenance of pluripotency or induce the differentiation of cancer stem cells (CSCs). However, the regulatory mechanism of CSC stemness mediated by transcription factors has not been extensively explored. Here, we show that two transcription factors (YB-1 and ERα), which are simultaneously highly expressed in estrogen receptor (ER)-positive CSCs, interact with each other to regulate the stemness and differentiation of ER-positive CSCs. Methods: The expression of YB-1 was examined in ER-positive CSCs and patient specimens. Western blot, real-time PCR, cell viability analysis, tumorsphere formation assay and subcutaneous tumorigenesis assays were used to study the stemness functions of YB-1 and ERα in CSCs. The relationship between YB-1 and ERα in cells was studied by promoter activity analysis, the electrophoretic mobility shift assay (EMSA) and the Co-IP assay. The mechanisms and functional significance of YB-1 in the sensitivity of CSCs to tamoxifen were further investigated with both in vitro and in vivo models. Results: YB-1 was aberrantly upregulated in the cancerous tissue of ER-positive breast cancer patients and in CSCs. Knockdown of YB-1 in ER-positive CSCs significantly inhibited cell stemness and induced differentiation, and the expression of YB-1 could be regulated by estrogen signaling and ERα in ER-positive breast CSCs. The Co-IP results showed that YB-1 interacted directly with ERα specifically in ER-positive non-CSCs and that YB-1 induced ERα degradation by ubiquitination via direct interaction in differentiated cells. Cell differentiation induced by FBS could inhibit YB-1 phosphorylation and promote YB-1 protein transfer from the nucleus to the cytoplasm. Moreover, cell differentiation induced by targeting inhibited the expression of YB-1 in ER-positive CSCs, which increased the sensitivity of cells to tamoxifen in vitro and in vivo. Conclusion: The ERα/YB-1 axis has an important role in the regulation of ER-positive breast cancer stemness. The dephosphorylation of YB-1 and the interaction between YB-1 and ERα may be the switch that initiates the differentiation of ER-positive CSCs. Targeting YB-1 to sensitize ER-positive CSCs to antiestrogen therapy might represent a new therapeutic strategy that warrants further exploration.
Project description:First-line treatment for osteosarcoma includes chemotherapy and surgery. However, the five-year survival rate of refractory osteosarcoma remains unsatisfactory. Osteosarcoma cancer stem cells, possessing stemness and chemoresistance, are one of the critical causes of poor response to chemotherapy. Elucidating regulatory signaling pathways of osteosarcoma cancer stem cells may provide a rationale for improving regimens against chemoresistant osteosarcoma. Methotrexate (MTX)-resistant osteosarcoma cells were established. microRNA expression profiles were used for detecting differentially expressed microRNA in resistant clones and the parental cells. microRNA target databases were employed to predict potential microRNA and mRNA interactions. Flow cytometry was performed to measure stem cell marker Prominin-1 (CD133)-positive cells. Immunofluorescence staining was applied to detect CD133 expression. miR-197-3p mimic or anti-miR-197-3p stably transfected cells were used to generate xenograft models. In the study, we found that miR-197-3p was increased in MTX-resistant cell lines. Overexpression of miR-197-3p enhanced the expression of cancer stem cell markers CD133, Octamer-binding protein 4 (OCT4), Transcription factor SOX-2 (SOX2), and Homeobox protein NANOG (NANOG), as well as chemoresistance-associated genes ATP-dependent translocase ABCB1 (ABCB1) and Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2), whereas miR-197-3p knockdown inhibited stemness and recovered sensitivity to MTX. We also classified the tumor suppressor Speckle-type POZ protein-like (SPOPL) as a target of miR-197-3p. The miR-197-3p mutation that could not combine SPOPL promoter regions was unable to sustain stemness or chemoresistance. Collectively, we discovered miR-197-3p conferred osteosarcoma stemness and chemotherapy resistance by targeting SPOPL, prompting promising therapeutic candidates for refractory osteosarcoma treatment.
Project description:Breast carcinomas are composed of cancer cells surrounded by various types of non-cancer cells such as fibroblasts. While active cancer-associated fibroblasts (CAFs) support tumor initiation and progression, quiescent breast stromal fibroblasts (BSFs) inhibit these effects through various cytokines such as osteoprotegerin (OPG). We showed here that OPG is upregulated in CAFs as compared to their adjacent normal tumor counterpart fibroblasts. Interestingly, breast cancer cells can upregulate OPG in BSFs in an IL-6-dependent manner through the IL-6/STAT3 pathway. When upregulated by ectopic expression, OPG activated BSFs through the NF-κB/STAT3/AUF1 signaling pathway and promoted their paracrine pro-carcinogenic effects in an IL-6-dependent manner. In addition, this increase in the OPG level enhanced the potential of BSFs to promote the growth of humanized orthotopic tumors in mice. However, specific OPG knock-down suppressed active CAFs and their paracrine pro-carcinogenic effects. Similar effects were observed when CAF cells were exposed to the pure recombinant OPG (rOPG) protein. Together, these findings show the importance of OPG in the activation of stromal fibroblasts and the possible use of rOPG or inhibitors of the endogenous protein to target CAFs as precision cancer therapeutics.
Project description:The crosstalk between malignant and nonmalignant cells in the tumor microenvironment, as maneuvered by cytokines/chemokines, drives breast cancer progression. In our previous study, we discovered Osteoprotegerin (OPG) as one of the cytokines heavily secreted by breast cancer cells. We demonstrated that OPG is expressed and secreted at very high levels from the highly invasive breast cancer cell lines SUM149PT and SUM1315MO2 as compared to normal human mammary epithelial HMEC cells. OPG was involved in modulating aneuploidy, cell proliferation, and angiogenesis in breast cancer. Mass spectrometry analysis performed in this study revealed OPG interacts with fatty acid synthase (FASN), which is a key enzyme of the fatty acid biosynthetic pathway in breast cancer cells. Further, electron microscopy, immunofluorescence, and fluorescence quantitation assays highlighted the presence of a large number of lipid bodies (lipid droplets) in SUM149PT and SUM1315MO2 cells in comparison to HMEC. We recently showed upregulation of the COX-2 inflammatory pathway and its metabolite PGE2 secretion in SUM149PT and SUM1315MO2 breast cancer cells. Interestingly, human breast cancer tissue samples displayed high expression of OPG, PGE2 and fatty acid synthase (FASN). FASN is a multifunctional enzyme involved in lipid biosynthesis. Immunofluorescence staining revealed the co-existence of COX-2 and FASN in the lipid bodies of breast cancer cells. We reasoned that there might be crosstalk between OPG, FASN, and COX-2 that sustains the inflammatory pathways in breast cancer. Interestingly, knocking down OPG by CRISPR/Cas9 gene editing in breast cancer cells decreased FASN expression at the protein level. Here, we identified cis-acting elements involved in the transcriptional regulation of COX-2 and FASN by recombinant human OPG (rhOPG). Treatment with FASN inhibitor C75 and COX-2 inhibitor celecoxib individually decreased the number of lipid bodies/cell, downregulated phosphorylation of ERK, GSK3β, and induced apoptosis by caspase-3/7 and caspase-9 activation. But a more efficient and effective decrease in lipid bodies/cell and survival kinase signaling was observed upon combining the drug treatments for the aggressive cancer cells. Collectively, the novel biological crosstalk between OPG, FASN, and COX-2 advocates for combinatorial drug treatment to block these players of carcinogenesis as a promising therapeutic target to treat highly invasive breast cancer.