Project description:In mammalian cells, tumor suppressor p53 plays critical roles in the regulation of glucose metabolism, including glycolysis and oxidative phosphorylation, but whether and how p53 also regulates gluconeogenesis is less clear. Here, we report that p53 efficiently down-regulates the expression of phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), which encode rate-limiting enzymes in gluconeogenesis. Cell-based assays demonstrate the p53-dependent nuclear exclusion of forkhead box protein O1 (FoxO1), a key transcription factor that mediates activation of PCK1 and G6PC, with consequent alleviation of FoxO1-dependent gluconeogenesis. Further mechanistic studies show that p53 directly activates expression of the NAD(+)-dependent histone deacetylase sirtuin 6 (SIRT6), whose interaction with FoxO1 leads to FoxO1 deacetylation and export to the cytoplasm. In support of these observations, p53-mediated FoxO1 nuclear exclusion, down-regulation of PCK1 and G6PC expression, and regulation of glucose levels were confirmed in C57BL/J6 mice and in liver-specific Sirt6 conditional knockout mice. Our results provide insights into mechanisms of metabolism-related p53 functions that may be relevant to tumor suppression.
Project description:Despite its prominence, the mechanisms through which the tumor suppressor p53 regulates most genes remain unclear. Recently, the regulatory factor X 7 (RFX7) emerged as a suppressor of lymphoid neoplasms, but its regulation and target genes mediating tumor suppression remain unknown. Here, we identify a novel p53-RFX7 signaling axis. Integrative analysis of the RFX7 DNA binding landscape and the RFX7-regulated transcriptome in three distinct cell systems reveals that RFX7 directly controls multiple established tumor suppressors, including PDCD4, PIK3IP1, MXD4, and PNRC1, across cell types and is the missing link for their activation in response to p53 and stress. RFX7 target gene expression correlates with cell differentiation and better prognosis in numerous cancer types. Interestingly, we find that RFX7 sensitizes cells to Doxorubicin by promoting apoptosis. Together, our work establishes RFX7's role as a ubiquitous regulator of cell growth and fate determination and a key node in the p53 transcriptional program.
Project description:Glioblastoma multiforme (GBM) is the most prevalent type of adult brain tumor, and one of the deadliest tumors known to mankind. The genetic understanding of GBM is, however, limited, and the molecular mechanisms which facilitate GBM cell survival and growth within the tumor microenvironment are largely unknown. We applied digital karyotyping and single nucleotide polymorphism (SNP) arrays to screen for copy number changes in GBM samples and found that the most frequently amplified region is at chromosome 7p11.2. The high resolution of digital karyotyping and SNP arrays permits the precise delineation of amplicon boundaries and has enabled identification of the minimal region of amplification at 7p11.2, which contains two genes, EGFR and SEC61γ. SEC61γ encodes a subunit of a heterotrimeric protein channel located in the endoplasmic reticulum (ER). In addition to its high frequency of gene amplification in GBMs, SEC61γ is also remarkably overexpressed in 77% of GBMs, but not in lower-grade gliomas. The siRNA-mediated knockdown of SEC61γ expression in tumor cells led to growth suppression and apoptosis. Furthermore, we showed that pharmacological ER stress agents induce SEC61γ expression in GBM cells. Together, these results indicate that aberrant expression of SEC61γ serves significant roles in GBM cell survival, likely via a mechanism that is involved in the cytoprotective ER stress-adaptive response to the tumor microenvironment. hSETD1A was silenced in HCT116 cells using retrovirus harboring shRNA specifically against the hSETD1A gene. 10μg RNA was reverse transcribed to cDNA using the Applied Biosystems High Capacity cDNA Reverse Transcription kit according to the manufacturer’s instructions (Applied Biosystems). cDNA products were treated with 100ng RNaseA and then purified using the Qiagen PCR purification kit according to the manufacturer’s instructions. NimbleGen Human Gene Expression array was purchased from Roche Applied Sciences. cDNA samples were labeled, Cy3 hybridized, and processed at the FSU NimbleGen Microarray Facility at Florida State University.
Project description:The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Project description:S100B protein is elevated in the brains of patients with early stages of Alzheimer's disease and Down's syndrome. S100A4 is correlated with the development of metastasis. Both proteins bind to p53 tumor suppressor. We found that both S100B and S100A4 bind to the tetramerization domain of p53 (residues 325-355) only when exposed in lower oligomerization states and so they disrupt the tetramerization of p53. In addition, S100B binds to the negative regulatory and nuclear localization domains, which results in a very tight binding to p53 protein sequences that exposed the tetramerization domain in their C terminus. Because the trafficking of p53 depends on its oligomerization state, we suggest that S100B and S100A4 could regulate the subcellular localization of p53. But, the differences in the way these proteins bind to p53 could result in S100B and S1004 having different effects on p53 function in cell-cycle control.
Project description:The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3?) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins.
Project description:Cyclin K, a newly recognized member of the "transcription" cyclin family, may play a dual role by regulating CDK and transcription. Using cDNA microarray technology, we found that cyclin K mRNA was dramatically increased in U373MG, a glioblastoma cell line deficient in wild-type p53, in the presence of exogenous p53. An electrophoretic mobility-shift assay showed that a potential p53-binding site (p53BS) in intron 1 of the cyclin K gene could indeed bind to p53 protein. Moreover, a heterologous reporter assay revealed that the p53BS possessed p53-dependent transcriptional activity. Colony-formation assays indicated that overexpression of cyclin K suppressed growth of T98G, U373MG and SW480 cells. The results suggested that cyclin K may play a role in regulating the cell cycle or apoptosis after being targeted for transcription by p53.