Project description:Mycoplasma hominis, which is difficult to culture and identify by ordinary methods, is one of the smallest pathogens in the human genitourinary tract causing urogenital infections. A CRISPR-Cas12a-based detection system might provide a novel application for M. hominis nucleic acid detection in molecular diagnostics. A plasmid containing the glyceraldehyde-3-phosphate dehydrogenase gene of M. hominis (ATCC_27545) as the positive control was constructed by homologous recombination. The active Cas12a protein was purified by affinity chromatography. The primers for recombinase polymerase amplification (RPA), the CRISPR RNA (crRNA), and the ratio of Cas12a to crRNA were further optimized. Finally, the sensitivity, specificity, and clinical effectiveness of the Cas12a detection system were confirmed. We successfully constructed and optimized a novel nucleic acid detection system for M. hominis based on RPA-CRISPR-Cas12a, and the whole process takes only 1 h. The limit of detection for the gap gene of M. hominis was 3 copies/μl and no cross-reactivity with other urogenital pathogens appeared. In the evaluation of 111 clinical samples, the sensitivity and specificity were both 1.000 and the area under the curve of the receiver operating characteristic was 1.000 (p < 0.001), indicating that the RPA-Cas12a-fluorescent assay was fully comparable to the traditional culture method. Finally, the RPA-Cas12a detection system can also be combined with lateral flow strips (LFS) to achieve visual detection. We successfully developed a low-cost and rapid detection method of M. hominis based on RPA-Cas12a technology. This method realized by fluorescence value readout and visual detection by LFS could be applied in population screening and resource-limited conditions.
Project description:Human rhinovirus B (HRV-B) is a major human viral pathogen that can be responsible for various kinds of infections. Due to the health risks associated with HRV-B, it is therefore crucial to explore a rapid, specific, and sensitive method for surveillance. Herein, we exploited a novel detection method for HRV-B by combining reverse-transcription recombinase polymerase amplification (RT-RPA) of nucleic acids isothermal amplification and the trans-cleavage activity of Cas12a. Our RT-RPA-Cas12a-based fluorescent assay can be completed within 35-45 min and obtain a lower detection threshold to 0.5 copies/µL of target RNA. Meanwhile, crRNA sequences without a specific protospacer adjacent motif can effectively activate the trans-cleavage activity of Cas12a. Moreover, our RT-RPA-Cas12a-based fluorescent method was examined using 30 clinical samples, and exhibited high accuracy with positive and negative predictive agreement of 90% and 100%, respectively. Taken together, a novel promising, rapid and effective RT-RPA-Cas12a-based detection method was explored and shows promising potential for on-site HRV-B infection in resource-limited settings.
Project description:Most viruses that infect plants use RNA to carry their genomic information; timely and robust detection methods are crucial for efficient control of these diverse pathogens. The RNA viruses, potexvirus (Potexvirus, family Alphaflexiviridae), potyvirus (Potyvirus, family Potyviridae), and tobamovirus (Tobamovirus, family Virgaviridae) are among the most economically damaging pathogenic plant viruses, as they are highly infectious and distributed worldwide. Their infection of crop plants, alone or together with other viruses, causes severe yield losses. Isothermal nucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and others have been harnessed for the detection of DNA- and RNA-based viruses. However, they have a high rate of non-specific amplification and other drawbacks. The collateral activities of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems such as Cas12 and Cas14 (which act on ssDNA) and Cas13 (which acts on ssRNA) have recently been exploited to develop highly sensitive, specific, and rapid detection platforms. Here, we report the development of a simple, rapid, and efficient RT- RPA method, coupled with a CRISPR/Cas12a-based one-step detection assay, to detect plant RNA viruses. This diagnostic method can be performed at a single temperature in less than 30 min and integrated with an inexpensive commercially available fluorescence visualizer to facilitate rapid, in-field diagnosis of plant RNA viruses. Our developed assay provides an efficient and robust detection platform to accelerate plant pathogen detection and fast-track containment strategies.
Project description:African swine fever (ASF) is a serious contagious disease that causes fatal haemorrhagic fever in domestic and wild pigs, with high morbidity. It has caused devastating damage to the swine industry worldwide, necessitating the focus of attention on detection of the ASF pathogen, the African swine fever virus (ASFV). In order to overcome the disadvantages of conventional diagnostic methods (e.g. time-consuming, demanding and unintuitive), quick detection tools with higher sensitivity need to be explored. In this study, based on the conserved p72 gene sequence of ASFV, we combined the Cas12a-based assay with recombinase polymerase amplification (RPA) and a fluorophore-quencher (FQ)-labeled reporter assay for rapid and visible detection. Five crRNAs designed for Cas12a-based assay showed specificity with remarkable fluorescence intensity under visual inspection. Within 20 minutes, with an initial concentration of two copies of DNA, the assay can produce significant differences between experimental and negative groups, indicating the high sensitivity and rapidity of the method. Overall, the developed RPA-Cas12a-fluorescence assay provides a fast and visible tool for point-of-care ASFV detection with high sensitivity and specificity, which can be rapidly performed on-site under isothermal conditions, promising better control and prevention of ASF.
Project description:BackgroundOne of the key barriers preventing rapid diagnosis of leptospirosis is the lack of available sensitive point-of-care testing. This study aimed to develop and validate a clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 12a (CRISPR/Cas12a) platform combined with isothermal amplification to detect leptospires from extracted patient DNA samples.Methodology/principal findingsA Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a-fluorescence assay was designed to detect the lipL32 gene of pathogenic Leptospira spp. The assays demonstrated a limit of detection (LOD) of 100 cells/mL, with no cross-reactivity against several other acute febrile illnesses. The clinical performance of the assay was validated with DNA extracted from 110 clinical specimens and then compared to results from qPCR detection of Leptospira spp. The RPA-CRISPR/Cas12a assay showed 85.2% sensitivity, 100% specificity, and 92.7% accuracy. The sensitivity increased on days 4-6 after the fever onset and decreased after day 7. The specificity was consistent for several days after the onset of fever. The overall performance of the RPA-CRISPR/Cas12a platform was better than the commercial rapid diagnostic test (RDT). We also developed a lateral flow detection assay (LFDA) combined with RPA-CRISPR/Cas12a to make the test more accessible and easier to interpret. The combined LFDA showed a similar LOD of 100 cells/mL and could correctly distinguish between known positive and negative clinical samples in a pilot study.Conclusions/significanceThe RPA-CRISPR/Cas12 targeting the lipL32 gene demonstrated acceptable sensitivity and excellent specificity for detection of leptospires. This assay might be an appropriate test for acute leptospirosis screening in limited-resource settings.
Project description:Dermatophytosis, an infectious disease caused by several fungi, can affect the hair, nails, and/or superficial layers of the skin and is of global significance. The most common dermatophytes in cats and dogs are Microsporum canis and Trichophyton mentagrophytes. Wood's lamp examination, microscopic identification, and fungal culture are the conventional clinical diagnostic methods, while PCR (Polymerase Chain Reaction) and qPCR (Quantitative PCR) are playing an increasingly important role in the identification of dermatophytes. However, none of these methods could be applied to point-of-care testing (POCT). The recent development of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) based diagnostic platform promises a rapid, accurate, and portable diagnostic tool. In this paper, we present a Cas12a-fluorescence assay to detect and differentiate the main dermatophytes in clinical samples with high specificity and sensitivity. The Cas12a-based assay was performed with a combination of recombinase polymerase amplification (RPA). The results could be directly visualized by naked eyes under blue light, and all tested samples were consistent with fungal culture and sequencing results. Compared with traditional methods, the RPA-Cas12a-fluorescence assay requires less time (about 30 min) and less complicated equipment, and the visual changes can be clearly observed with naked eyes, which is suitable for on-site clinical diagnosis.
Project description:In recent years, meat adulteration safety incidents have occurred frequently, triggering widespread attention and discussion. Although there are a variety of meat quality identification methods, conventional assays require high standards for personnel and experimental conditions and are not suitable for on-site testing. Therefore, there is an urgent need for a rapid, sensitive, high specificity and high sensitivity on-site meat detection method. This study is the first to apply RPA combined with CRISPR/Cas12a technology to the field of multiple meat identification. The system developed by parameter optimization can achieve specific detection of chicken, duck, beef, pork and lamb with a minimum target sequence copy number as low as 1 × 100 copies/μL for 60 min at a constant temperature. LFD test results can be directly observed with the naked eye, with the characteristics of fast, portable and simple operation, which is extremely in line with current needs. In conclusion, the meat identification RPA-CRISPR/Cas12a-LFD system established in this study has shown promising applications in the field of meat detection, with a profound impact on meat quality, and provides a model for other food safety control programs.
Project description:BackgroundVibrio parahaemolyticus (V. parahaemolyticus) is a leading cause of food poisoning and is of great importance to public health due to the frequency and seriousness of the diseases. The simple, timely and efficient detection of this pathogen is a major concern worldwide. In this study, we established a simple and rapid method based on recombinase polymerase amplification (RPA) for the determination of V. parahaemolyticus. According to the gyrB gene sequences of V. parahaemolyticus available in GenBank, specific primers and an exo probe were designed for establishing real-time recombinase polymerase amplification (real-time RPA).ResultsThe real-time RPA reaction was performed successfully at 38 °C, and results were obtained within 20 min. The method only detected V. parahaemolyticus and did not show cross-reaction with other bacteria, exhibiting a high level of specificity. The study showed that the detection limit (LOD) of real-time RPA was 1.02 × 102 copies/reaction. For artificially contaminated samples with different bacteria concentrations, V. parahaemolyticus could be detected within 5-12 min by real-time RPA in oyster sauce, codfish and sleeve-fish at concentrations as low as 4 CFU/25 g, 1 CFU/25 g and 7 CFU/25 g, respectively, after enrichment for 6 h, but were detected in a minimum of 35 min by real-time PCR (Ct values between 27 and 32).ConclusionThis study describes a simple, rapid, and reliable method for the detection of V. parahaemolyticus, which could potentially be applied in the research laboratory and disease diagnosis.
Project description:Because of the serious adulteration of goat milk, the rapid on-site detection of goat milk powder adulteration is needed. In this study, the CRISPR/Cas12a detection system combined with recombinase polymerase amplification (RPA) was employed to qualitatively detect the adulteration of goat milk powder with cattle-derived components. Specific primers and crRNA were designed and screened. After the optimization of RPA and the Cas system, the RPA-CRISPR/Cas12a detection method was established. The detection can complete the rapid identification of cattle-derived components in 45 min, without the assistant of large equipment. The absolute detectability of the RPA-CRISPR/Cas12a assay could reach 10-2 ng/μL for cattle genomic DNA, and 1% (w/w) for cattle milk powder, which is suitable to meet the testing requirements for on-site detection. In total, 55 commercial goat milk powder products were collected for blind testing. The results showed that 27.3% of the samples were adulterated with cattle ingredients, revealing a serious adulteration situation in goat milk powder market. The RPA-CRISPR/Cas12a assay established in this research exhibited its potential for practical use of on-site detection to detect cow milk powder in goat milk powder and can provide reliable technical reference for combating food fraud of adulteration of goat milk products.
Project description:Here we report a new real-time PCR assay using SYBR Green which provides higher sensitivity for the specific detection of low levels of Pneumocystis jirovecii. To do so, two primer sets were designed, targeting the family of genes that code for the most abundant surface protein of Pneumocystis spp., namely the major surface glycoproteins (Msg), and the mitochondrial large subunit rRNA (mtLSUrRNA) multicopy gene, simultaneously detecting two regions. PCR methods are instrumental in detecting these low levels; however, current nested-PCR methods are time-consuming and complex. To validate our new real-time Msg-A/mtLSUrRNA PCR protocol, we compared it with nested-PCR based on the detection of Pneumocystis mitochondrial large subunit rRNA (mtLSUrRNA), one of the main targets used to detect this pathogen. All samples identified as positive by the nested-PCR method were found positive using our new real-time PCR protocol, which also detected P. jirovecii in three nasal aspirate samples that were negative for both rounds of nested-PCR. Furthermore, we read both rounds of the nested-PCR results for comparison and found that some samples with no PCR amplification, or with a feeble band in the first round, correlated with higher Ct values in our real-time Msg-A/mtLSUrRNA PCR. This finding demonstrates the ability of this new single-round protocol to detect low Pneumocystis levels. This new assay provides a valuable alternative for P. jirovecii detection, as it is both rapid and sensitive.