Project description:BackgroundUnder competing risks, the commonly used sub-distribution hazard ratio (SHR) is not easy to interpret clinically and is valid only under the proportional sub-distribution hazard (SDH) assumption. This paper introduces an alternative statistical measure: the restricted mean time lost (RMTL).MethodsFirst, the definition and estimation methods of the measures are introduced. Second, based on the differences in RMTLs, a basic difference test (Diff) and a supremum difference test (sDiff) are constructed. Then, the corresponding sample size estimation method is proposed. The statistical properties of the methods and the estimated sample size are evaluated using Monte Carlo simulations, and these methods are also applied to two real examples.ResultsThe simulation results show that sDiff performs well and has relatively high test efficiency in most situations. Regarding sample size calculation, sDiff exhibits good performance in various situations. The methods are illustrated using two examples.ConclusionsRMTL can meaningfully summarize treatment effects for clinical decision making, which can then be reported with the SDH ratio for competing risks data. The proposed sDiff test and the two calculated sample size formulas have wide applicability and can be considered in real data analysis and trial design.
Project description:In clinical and epidemiologic studies, hazard ratios are often applied to compare treatment effects between 2 groups for survival data. For competing-risks data, the corresponding quantities of interest are cause-specific hazard ratios and subdistribution hazard ratios. However, they both have some limitations related to model assumptions and clinical interpretation. Therefore, we recommend restricted mean time lost (RMTL) as an alternative measure that is easy to interpret in a competing-risks framework. Based on the difference in RMTL (RMTLd), we propose a new estimator, hypothetical test, and sample-size formula. Simulation results show that estimation of the RMTLd is accurate and that the RMTLd test has robust statistical performance (both type I error and statistical power). The results of 3 example analyses also verify the performance of the RMTLd test. From the perspectives of clinical interpretation, application conditions, and statistical performance, we recommend that the RMTLd be reported along with the hazard ratio in analyses of competing-risks data and that the RMTLd even be regarded as the primary outcome when the proportional hazards assumption fails.
Project description:BACKGROUND:Restricted mean survival time (RMST) is an underutilized estimand in time-to-event analyses. Herein, we highlight its strengths by comparing time to (1) all-cause mortality and (2) initiation of antiretroviral therapy (ART) for HIV-infected persons who inject drugs (PWID) and persons who do not inject drugs. METHODS:RMST to death was determined by integrating the Kaplan-Meier survival curve to 5 years of follow-up. To account for the competing risks of death and loss-to-clinic when estimating time to ART, we calculated RMST to ART initiation by estimating the area between the survival curve for ART initiation and the cumulative incidence curve for death or loss-to-clinic. We standardized all curves using inverse probability of exposure weights. RESULTS:We followed 3044 HIV-positive, ART-naive persons from enrollment into the Johns Hopkins HIV Clinical Cohort from 1996 to 2014. PWID had a - 0.19 year (95% confidence interval (CI): - 0.29, - 0.10) difference in survival over 5 years of follow-up compared to persons who did not inject drugs. There was no difference between the two groups in time not on ART while alive and in clinic (RMST difference = 0.08, 95% CI: -0.10, 0.36). CONCLUSIONS:PWID have similar expected time to ART initiation after properly accounting for their greater risk of death and loss-to-clinic.
Project description:Time to event outcomes is commonly encountered in epidemiologic research. Multiple papers have discussed the inadequacy of using the hazard ratio as a causal effect measure due to its noncollapsibility and the time-varying nature. In this paper, we further clarified that the hazard ratio might be used as a conditional causal effect measure, but it is generally not a valid marginal effect measure, even under randomized design. We proposed to use the restricted mean survival time (RMST) difference as a causal effect measure, since it essentially measures the mean difference over a specified time horizon and has a simple interpretation as the area under survival curves. For observational studies, propensity score adjustment can be implemented with RMST estimation to remove observed confounding bias. We proposed a propensity score stratified RMST estimation strategy, which performs well in our simulation evaluation and is relatively easy to implement for epidemiologists in practice. Our stratified RMST estimation includes two different versions of implementation, depending on whether researchers want to involve regression modeling adjustment, which provides a powerful tool to examine the marginal causal effect with observational survival data.
Project description:It is well accepted that individualized treatment regimes may improve the clinical outcomes of interest. However, positive treatment effects are often accompanied by certain side effects. Therefore, when choosing the optimal treatment regime for a patient, we need to consider both efficacy and safety issues. In this article, we propose to model time to a primary event of interest and time to severe side effects of treatment by a competing risks model and define a restricted optimal treatment regime based on cumulative incidence functions. The estimation approach is derived using a penalized value search method and investigated through extensive simulations. The proposed method is applied to an HIV dataset obtained from Health Sciences South Carolina, where we minimize the risk of treatment or virologic failures while controlling the risk of serious drug-induced side effects.
Project description:We develop methods for competing risks analysis when individual event times are correlated within clusters. Clustering arises naturally in clinical genetic studies and other settings. We develop a nonparametric estimator of cumulative incidence, and obtain robust pointwise standard errors that account for within-cluster correlation. We modify the two-sample Gray and Pepe-Mori tests for correlated competing risks data, and propose a simple two-sample test of the difference in cumulative incidence at a landmark time. In simulation studies, our estimators are asymptotically unbiased, and the modified test statistics control the type I error. The power of the respective two-sample tests is differentially sensitive to the degree of correlation; the optimal test depends on the alternative hypothesis of interest and the within-cluster correlation. For purposes of illustration, we apply our methods to a family-based prospective cohort study of hereditary breast/ovarian cancer families. For women with BRCA1 mutations, we estimate the cumulative incidence of breast cancer in the presence of competing mortality from ovarian cancer, accounting for significant within-family correlation.
Project description:In clinical studies with time-to-event outcomes, the restricted mean survival time (RMST) has attracted substantial attention as a summary measurement for its straightforward clinical interpretation. When the data are subject to length-biased sampling, which is frequently encountered in observational cohort studies, existing methods to estimate the RMST are not applicable. In this article, we consider nonparametric and semiparametric regression methods to estimate the RMST under the setting of length-biased sampling. To assess the covariate effects on the RMST, a semiparametric regression model that directly relates the covariates and the RMST is assumed. Based on the model, we develop unbiased estimating equations to obtain consistent estimators of covariate effects by properly adjusting for informative censoring and length bias. Stochastic process theories are used to establish the asymptotic properties of the proposed estimators. We investigate the finite sample performance through simulations and illustrate the methods by analyzing a prevalent cohort study of dementia in Canada.
Project description:In epidemiologic studies of time to an event, mean lifetime is often of direct interest. We propose methods to estimate group- (e.g., treatment-) specific differences in restricted mean lifetime for studies where treatment is not randomized and lifetimes are subject to both dependent and independent censoring. The proposed methods may be viewed as a hybrid of two general approaches to accounting for confounders. Specifically, treatment-specific proportional hazards models are employed to account for baseline covariates, while inverse probability of censoring weighting is used to accommodate time-dependent predictors of censoring. The average causal effect is then obtained by averaging over differences in fitted values based on the proportional hazards models. Large-sample properties of the proposed estimators are derived and simulation studies are conducted to assess their finite-sample applicability. We apply the proposed methods to liver wait list mortality data from the Scientific Registry of Transplant Recipients.
Project description:Ipsilateral breast tumor relapse (IBTR) often occurs in breast cancer patients after their breast conservation therapy. The IBTR status' classification (true local recurrence versus new ipsilateral primary tumor) is subject to error and there is no widely-accepted gold standard. Time to IBTR is likely informative for IBTR classification because new primary tumor tends to have a longer mean time to IBTR and is associated with improved survival as compared with the true local recurrence tumor. Moreover, some patients may die from breast cancer or other causes in a competing risk scenario during the follow-up period. Because the time to death can be correlated to the unobserved true IBTR status and time to IBTR (if relapse occurs), this terminal mechanism is non-ignorable. In this article, we propose a unified framework that addresses these issues simultaneously by modeling the misclassified binary outcome without a gold standard and the correlated time to IBTR, subject to dependent competing terminal events. We evaluate the proposed framework by a simulation study and apply it to a real dataset consisting of 4, 477 breast cancer patients. The adaptive Gaussian quadrature tools in SAS procedure NLMIXED can be conveniently used to fit the proposed model. We expect to see broad applications of our model in other studies with a similar data structure.
Project description:A population average regression model is proposed to assess the marginal effects of covariates on the cumulative incidence function when there is dependence across individuals within a cluster in the competing risks setting. This method extends the Fine-Gray proportional hazards model for the subdistribution to situations, where individuals within a cluster may be correlated due to unobserved shared factors. Estimators of the regression parameters in the marginal model are developed under an independence working assumption where the correlation across individuals within a cluster is completely unspecified. The estimators are consistent and asymptotically normal, and variance estimation may be achieved without specifying the form of the dependence across individuals. A simulation study evidences that the inferential procedures perform well with realistic sample sizes. The practical utility of the methods is illustrated with data from the European Bone Marrow Transplant Registry.