Project description:A nickel/N-heterocyclic carbene (NHC) catalytic system has been developed for the borylation of aryl sulfoxides with B2 (neop)2 (neop=neopentyl glycolato). A wide range of aryl sulfoxides with different electronic and steric properties were converted into the corresponding arylboronic esters in good yields. The regioselective borylation of unsymmetric diaryl sulfoxides was also feasible leading to borylation of the sterically less encumbered aryl substituent. Competition experiments demonstrated that an electron-deficient aryl moiety reacts preferentially. The origin of the selectivity in the Ni-catalyzed borylation of electronically biased unsymmetrical diaryl sulfoxide lies in the oxidative addition step of the catalytic cycle, as oxidative addition of methoxyphenyl 4-(trifluoromethyl)phenyl sulfoxide to the Ni(0) complex occurs selectively to give the structurally characterized complex trans-[Ni(ICy)2 (4-CF3 -C6 H4 ){(SO)-4-MeO-C6 H4 }] 4. For complex 5, the isomer trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I was structurally characterized in which the phenyl sulfinyl ligand is bound via the oxygen atom to nickel. In solution, the complex trans-[Ni(ICy)2 (C6 H5 )(OSC6 H5 )] 5-I is in equilibrium with the S-bonded isomer trans-[Ni(ICy)2 (C6 H5 )(SOC6 H5 )] 5, as shown by NMR spectroscopy. DFT calculations reveal that these isomers are separated by a mere 0.3 kJ/mol (M06/def2-TZVP-level of theory) and connected via a transition state trans-[Ni(ICy)2 (C6 H5 )(η2 -{SO}-C6 H5 )], which lies only 10.8 kcal/mol above 5.
Project description:The preparation of high-performance fluorinated poly(aryl thioethers) has received little attention compared to the corresponding poly(aryl ethers), despite the excellent physical properties displayed by many polysulfides. Herein, we report a highly efficient route to fluorinated poly(aryl thioethers) via an organocatalyzed nucleophilic aromatic substitution of silyl-protected dithiols. This approach requires low catalyst loadings, proceeds rapidly at room temperature, and is effective for many different perfluorinated or highly activated aryl monomers. Computational investigations of the reaction mechanism reveal an unexpected, concerted SNAr mechanism, with the organocatalyst playing a critical, dual-activation role in facilitating the process. Not only does this remarkable reactivity enable rapid access to fluorinated poly(aryl thioethers), but also opens new avenues for the processing, fabrication, and functionalization of fluorinated materials with easy removal of the volatile catalyst and TMSF byproducts.Fluorinated poly(aryl thioethers), unlike their poly(aryl ethers) counterparts, have received little attention despite excellent physical properties displayed by many polysulfides. Here the authors show a highly efficient route to fluorinated poly(aryl thioethers) via an organocatalyzed nucleophilic aromatic substitution of silyl-protected dithiols.
Project description:The photoracemization of chiral alkyl aryl sulfoxides with a photosensitizer has not been sufficiently investigated thus far. Therefore, in this study, a rapid photoracemization reaction of enantiopure alkyl aryl sulfoxides using 1 mol % 2,4,6-triphenylpyrylium tetrafluoroborate (TPT+) was developed. Various substitution patterns were tolerated and every racemization reaction proceeded extremely fast (k2 = 1.77 × 104-6.08 × 101 M-1 s-1, t1/2 = 0.4-114 s). Some chiral sulfoxides with easily oxidizable functional groups are not appropriate for this photoisomerization. The electrochemical potentials of the functional groups, determined via cyclic voltammetry, are useful for predicting the reactive or nonreactive groups in this photoracemization reaction. A theoretical study was conducted to clarify the sp2-like nature of S of the sulfoxide cation radical, which makes photoracemization easier.
Project description:The Mislow-Braverman-Evans rearrangement, the reversible [2,3]-sigmatropic rearrangement of allylic sulfoxides to allylic sulfenate esters, finds widespread applications in organic synthesis and medicinal chemistry. However, the products of this powerful strategy have primarily been limited to derivatives of allylic alcohols. In contrast, access to structurally similar benzylic alcohols has not yet been established. Described herein is an unprecedented dearomative Mislow-Braverman-Evans rearrangement of aryl sulfoxides to afford benzylic alcohols. A variety of heteroaryl sulfoxides as well as α-naphthyl sulfoxides could be tolerated, and a diverse range of primary, secondary, and tertiary alcohols possessing either alkyl or aryl substituents can be prepared by our protocol with broad functional group tolerance. A patented bioactive molecule could be prepared using our protocol as the key step with exclusive diastereoselectivity, highlighting its potential utility in organic synthesis. Key to the success of the transformation is the dearomative tautomerization to shift the reactive alkene to the exocyclic position enabled by the reversible deprotonation of the benzylic C-H bond, setting the stage for the subsequent [2,3]-sigmatropic rearrangement. Density functional theory (DFT) calculations reveal that protonation of the α-carbon of the sulfoxide is the stereocontrolling step, generating the intermediate that undergoes [2,3]-sigmatropic rearrangement. The full reaction profile is outlined, showing the reversible nature of each step, which causes the observed erosion of the enantiopurity.
Project description:We report herein a visible light sensitizer-catalyzed aerobic oxidation of thioethers, affording sulfoxides in good to excellent yields. The loading of the catalyst was as low as 0.1 mol%. The selectivity was excellent. Mechanism studies showed both singlet oxygen and superoxide radical anion were likely involved in this transformation.
Project description:Oxygen-atom transfer reactions are a prominent class of synthetic redox reactions that often use high-energy oxygen-atom donor reagents. Electrochemical methods can bypass these reagents by using water as the source of oxygen atoms through pathways involving direct or indirect (mediated) electrolysis. Here, manganese porphyrins and related mediators are shown to be effective molecular electrocatalysts for selective oxidation of thioethers to sulfoxides, without overoxidation to the sulfone. The reactions proceed by proton-coupled oxidation of a MnIII-OH2 species to generate a MnIV-OH and MnV═O species. This methodology is compared to direct electrolysis methods initiated by single-electron oxidation of the thioether, and chloride-mediated electrochemical oxidation of thioethers. The Mn-mediated reactions operate at lower applied potential and exhibit improved substrate scope and functional group compatibility relative to direct electrolysis, and the tunability of the Mn-based mediators allows for improved performance relative to chloride-mediated electrolysis. An electrochemical parallel screening platform is developed and applied to a library of pharmaceutically relevant thioethers.
Project description:Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.
Project description:Aromatic [5,5]-rearrangement can in principle be an ideal protocol to access dearomative compounds. However, the lack of competent [5,5]-rearrangement impedes the advance of the protocol. In this Article, we showcase the power of [5,5]-rearrangement recently developed in our laboratory for constructing an intriguing dearomative sulfonium specie which features versatile and unique reactivities to perform nucleophilic 1,2- and 1,4-addition and cyclization, thus achieving dearomative di- and trifunctionalization of easily accessible aryl sulfoxides. Impressively, the dearomatization products can be readily converted to sulfur-removed cyclohexenones, naphthalenones, bicyclic cyclohexadienones, and multi-substituted benzenes. Mechanistic studies shed light on the key intermediates and the remarkable chemo-, regio- and stereoselectivities of the reactions.
Project description:The arylation of sp3-hybridized C-H's bonds is a powerful strategy to build molecular complexity and diversity. A novel and efficient palladium-catalyzed direct sp3 C-H arylation of aryl and alkyl benzyl thioether derivatives with aryl bromides is reported. The reaction involves reversible deprotonation of the benzylic C-H's of the thioether with either LiN(SiMe3)2 or NaN(SiMe3)2 and subsequent cross-coupling to provide the functionalized products in up to 97% yield. A screen of 24 of the most successful ligands in cross-coupling chemistry led to the identification of NiXantPhos as the only viable ligand for this challenging coupling.