Project description:BackgroundAbnormalities in white matter integrity and specific functional network alterations have been increasingly reported in patients with Parkinson's disease (PD). However, little is known about the inter-hemispheric interaction in PD.MethodsFifty-one drug naive patients with PD and 51 age- and gender-matched healthy subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans. We compared the inter-hemispheric resting-state functional connectivity between patients with PD and healthy controls, using the voxel-mirrored homotopic connectivity (VMHC) approach. Then, we correlated the results from VMHC and clinical features in PD patients.ResultsRelative to healthy subject, patients exhibited significantly lower VMHC in putamen and cortical regions associated with sensory processing and motor control (involving sensorimotor and supramarginal cortex), which have been verified to play a critical role in PD. In addition, there were inverse relationships between the UPDRS motor scores and VMHC in the sensorimotor, and between the illness duration and VMHC in the supramarginal gyrus in PD patients.ConclusionsOur results suggest that the functional coordination between homotopic brain regions is impaired in PD patients, extending previous notions about the disconnection of corticostriatal circuit by providing new evidence supporting a disturbance in inter-hemispheric connections in PD.
Project description:Classical accounts of the pathophysiology of Parkinson's disease have emphasized degeneration of dopaminergic nigrostriatal neurons with consequent dysfunction of cortico-striatal-thalamic loops. In contrast, post-mortem studies indicate that pathological changes in Parkinson's disease (Lewy neurites and Lewy bodies) first appear primarily in the lower brainstem with subsequent progression to more rostral parts of the neuraxis. The nigrostriatal and histological perspectives are not incompatible, but they do emphasize different anatomical structures. To address the question of which brain structures are functionally most affected by Parkinson's disease, we performed a resting-state functional magnetic resonance imaging study focused on striatal functional connectivity. We contrasted 13 patients with advanced Parkinson's disease versus 19 age-matched control subjects, using methodology incorporating scrupulous attention to minimizing the effects of head motion during scanning. The principal finding in the Parkinson's disease group was markedly lower striatal correlations with thalamus, midbrain, pons and cerebellum. This result reinforces the importance of the brainstem in the pathophysiology of Parkinson's disease. Focally altered functional connectivity also was observed in sensori-motor and visual areas of the cerebral cortex, as well the supramarginal gyrus. Striatal functional connectivity with the brainstem was graded (posterior putamen > anterior putamen > caudate), in both patients with Parkinson's disease and control subjects, in a manner that corresponds to well-documented gradient of striatal dopaminergic function loss in Parkinson's disease. We hypothesize that this gradient provides a clue to the pathogenesis of Parkinson's disease.
Project description:Mapping the structural and functional connectivity of the central nervous system has become a key area within neuroimaging research. While detailed network structures across the entire brain have been probed using animal models, non-invasive neuroimaging in humans has thus far been dominated by cortical investigations. Beyond the cortex, subcortical nuclei have traditionally been less accessible due to their smaller size and greater distance from radio frequency coils. However, major neuroimaging developments now provide improved signal and the resolution required to study these structures. Here, we present an overview of the connectivity between the amygdala, brainstem, cerebellum, spinal cord and the rest of the brain. While limitations to their imaging and analyses remain, we also provide some recommendations and considerations for mapping brain connectivity beyond the cortex.
Project description:IntroductionParkinson's disease (PD) is a movement disorder caused by dysfunction in the basal ganglia (BG). Clinically relevant gait deficits, such as decreased velocity and increased variability, may be caused by underlying neural dysfunction. Reductions in resting-state functional connectivity (rs-FC) between networks have been identified in PD compared to controls; however, the association between gait characteristics and rs-FC of brain networks in people with PD has not yet been explored. The present study aimed to investigate these associations.MethodsGait characteristics and rs-FC MRI data were collected for participants with PD (N = 50). Brain networks were identified from a set of seeds representing cortical, subcortical, and cerebellar regions. Gait outcomes were correlated with the strength of rs-FC within and between networks of interest. A stepwise regression analysis was also conducted to determine whether the rs-FC strength of brain networks, along with clinical motor scores, were predictive of gait characteristics.ResultsGait velocity was associated with rs-FC within the visual network and between motor and cognitive networks, most notably BG-thalamus internetwork rs-FC. The stepwise regression analysis showed strength of BG-thalamus internetwork rs-FC and clinical motor scores were predictive of gait velocity.ConclusionThe results of the present study demonstrate gait characteristics are associated with functional organization of the brain at the network level, providing insight into the neural mechanisms of clinically relevant gait characteristics. This knowledge could be used to optimize the design of gait rehabilitation interventions for people with neurological conditions.
Project description:BackgroundFronto-striatal disconnection is thought to be at the basis of dysexecutive symptoms in patients with Parkinson's disease (PD). Multiple reserve-related processes may offer resilience against functional decline. Among these, cognitive reserve (CR) refers to the adaptability of cognitive processes.ObjectiveTo test the hypothesis that functional connectivity of pathways associated with executive dysfunction in PD is modulated by CR.MethodsTwenty-six PD patients and 24 controls underwent resting-state functional magnetic resonance imaging. Functional connectivity was explored with independent component analysis and seed-based approaches. The following networks were selected from the outcome of the independent component analysis: default-mode (DMN), left and right fronto-parietal (l/rFPN), salience (SalN), sensorimotor (SMN), and occipital visual (OVN). Seed regions were selected in the substantia nigra and in the dorsolateral and ventromedial prefrontal cortex for the assessment of seed-based functional connectivity maps. Educational and occupational attainments were used as CR proxies.ResultsCompared with their counterparts with high CR, PD individuals with low CR had reduced posterior DMN functional connectivity in the anterior cingulate and basal ganglia, and bilaterally reduced connectivity in fronto-parietal regions within the networks defined by the dorsolateral and ventrolateral prefrontal seeds. Hyper-connectivity was detected within medial prefrontal regions when comparing low-CR PD with low-CR controls.ConclusionCR may exert a modulatory effect on functional connectivity in basal ganglia and executive-attentional fronto-parietal networks. In PD patients with low CR, attentional control networks seem to be downregulated, whereas higher recruitment of medial frontal regions suggests compensation via an upregulation mechanism. This upregulation might contribute to maintaining efficient cognitive functioning when posterior cortical function is progressively reduced.
Project description:AimObsessive-compulsive disorder (OCD) is a heterogeneous condition characterized by distinct symptom subtypes, each with varying pathophysiologies and treatment responses. Recent research has highlighted the role of the amygdala, a brain region that is central to emotion processing, in these variations. However, the role of amygdala subregions with distinct functions has not yet been fully elucidated. In this study, we aimed to clarify the biological mechanisms underlying OCD subtype heterogeneity by investigating the functional connectivity (FC) of amygdala subregions across distinct OCD symptom subtypes.MethodsResting-state functional magnetic resonance images were obtained from 107 medication-free OCD patients and 110 healthy controls (HCs). Using centromedial, basolateral, and superficial subregions of the bilateral amygdala as seed regions, whole-brain FC was compared between OCD patients and HCs and among patients with different OCD symptom subtypes, which included contamination fear and washing, obsessive (i.e., harm due to injury, aggression, sexual, and religious), and compulsive (i.e., symmetry, ordering, counting, and checking) subtypes.ResultsCompared to HCs, compulsive-type OCD patients exhibited hypoconnectivity between the left centromedial amygdala (CMA) and bilateral superior frontal gyri. Compared with patients with contamination fear and washing OCD subtypes, patients with compulsive-type OCD showed hypoconnectivity between the left CMA and left frontal cortex.ConclusionsCMA-frontal cortex hypoconnectivity may contribute to the compulsive presentation of OCD through impaired control of behavioral responses to negative emotions. Our findings underscored the potential significance of the distinct neural underpinnings of different OCD manifestations, which could pave the way for more targeted treatment strategies in the future.
Project description:The medial superior frontal cortex (SFC), including the supplementary motor area (SMA) and presupplementary motor area (preSMA), is implicated in movement and cognitive control, among other functions central to decision making. Previous studies delineated the anatomical boundaries and functional connectivity of the SMA. However, it is unclear whether the preSMA, which responds to a variety of behavioral tasks, comprises functionally distinct areas. With 24 seed regions systematically demarcated throughout the anterior and posterior medial SFC, we examined here the functional divisions of the medial SFC on the basis of the "correlograms" of resting-state functional magnetic resonance imaging data of 225 adult individuals. In addition to replicating segregation of the SMA and posterior preSMA, the current results elucidated functional connectivities of anterior preSMA-the most anterior part of the medial SFC. In contrast to the caudal medial SFC, the anterior preSMA is connected with most of the prefrontal but not with somatomotor areas. Overall, the SMA is strongly connected to the thalamus and epithalamus, the posterior preSMA to putamen, pallidum, and subthalamic nucleus, and anterior preSMA to the caudate, with the caudate showing significant hemispheric asymmetry. These findings may provide a useful platform for future studies to investigate frontal cortical functions.
Project description:Impulse control disorders (ICD) in Parkinson's disease (PD) might be attributed to misestimate of rewards or the failure to curb inappropriate choices. The mechanisms underlying ICD were reported to involve the lateralization of monoamine network. Our objective was to probe the significant role of lateralization in the pathogenesis of ICD. Twenty-one PD patients with ICD (PD-ICD), thirty-three without ICD (PD-no ICD), and thirty-seven healthy controls (HCs) were recruited and performed T1-weighted, diffusion tensor imaging (DTI) scans and resting state functional magnetic resonance imaging (rs-fMRI). By applying the Voxel-mirrored Homotopic Connectivity (VMHC) and Freesurfer, we evaluated participants' synchronicity of functional connectivity and structural changes between hemispheres. Also, tract-based spatial statistics (TBSS) was applied to compare fiber tracts differences. Relative to PD-no ICD group, PD-ICD group demonstrated reduced VMHC values in middle frontal gyrus (MFG). Compared to HCs, PD-ICD group mainly showed decreased VMHC values in MFG, middle and superior orbital frontal gyrus (OFG), inferior frontal gyrus (IFG) and caudate, which were related to reward processing and inhibitory control. The severity of impulsivity was negatively correlated with the mean VMHC values of MFG in PD-ICD group. Receiver operating characteristic (ROC) curves analyses uncovered that the mean VMHC values of MFG might be a potential marker identifying PD-ICD patients. However, we found no corresponding asymmetrical alteration in cortical thickness and no significant differences in fractional anisotropy (FA) and mean diffusivity (MD). Our results provided further evidence for asymmetry of functional connectivity in mesolimbic reward and response inhibition network in ICD.
Project description:OBJECTIVE:Evaluation of a data-driven, model-based classification approach to discriminate idiopathic Parkinson's disease (PD) patients from healthy controls (HC) based on between-network connectivity in whole-brain resting-state functional MRI (rs-fMRI). METHODS:Whole-brain rs-fMRI (EPI, TR = 2.2?s, TE = 30?ms, flip angle = 90°. resolution = 3.1 × 3.1 × 3.1?mm, acquisition time ? 11?min) was assessed in 42 PD patients (medical OFF) and 47 HC matched for age and gender. Between-network connectivity based on full and L2-regularized partial correlation measures were computed for each subject based on canonical functional network architectures of two cohorts at different levels of granularity (Human Connectome Project: 15/25/50/100/200 networks; 1000BRAINS: 15/25/50/70 networks). A Boosted Logistic Regression model was trained on the correlation matrices using a nested cross-validation (CV) with 10 outer and 10 inner folds for an unbiased performance estimate, treating the canonical functional network architecture and the type of correlation as hyperparameters. The number of boosting iterations was fixed at 100. The model with the highest mean accuracy over the inner folds was trained using an non-nested 10-fold 20-repeats CV over the whole dataset to determine feature importance. RESULTS:Over the outer folds the mean accuracy was found to be 76.2% (median 77.8%, SD 18.2, IQR 69.4 - 87.1%). Mean sensitivity was 81% (median 80%, SD 21.1, IQR 75 - 100%) and mean specificity was 72.7% (median 75%, SD 20.4, IQR 66.7 - 80%). The 1000BRAINS 50-network-parcellation, using full correlations, performed best over the inner folds. The top features predominantly included sensorimotor as well as sensory networks. CONCLUSION:A rs-fMRI whole-brain-connectivity, data-driven, model-based approach to discriminate PD patients from healthy controls shows a very good accuracy and a high sensitivity. Given the high sensitivity of the approach, it may be of use in a screening setting. ADVANCES IN KNOWLEDGE:Resting-state functional MRI could prove to be a valuable, non-invasive neuroimaging biomarker for neurodegenerative diseases. The current model-based, data-driven approach on whole-brain between-network connectivity to discriminate Parkinson's disease patients from healthy controls shows promising results with a very good accuracy and a very high sensitivity.
Project description:Parkinson's disease (PD) is characterized by degenerative changes of nigral dopamine neurons, resulting in the dopaminergic denervation of the striatum. Resting state networks studies have demonstrated that dopamine modulates distinct network connectivity patterns in both a linear and a nonlinear fashion, but quantitative analyses of dopamine-dependent functional connectivity secondary to PD pathology were less informative. In the present study, we performed a correlation analysis between striatal dopamine levels assessed quantitatively by FP-CIT positron emission tomography imaging and resting-state functional connectivity in 23 drug naïve de novo patients with PD to elucidate dopamine-dependent functional networks. The major finding is that the patterns of dopamine-dependent positive functional connectivity varied depending on the location of striatal seeds. Dopamine-dependent functional connectivity with the caudate predominantly overlay pericentral cortical areas, whereas dopamine-dependent structures functionally connected with the posterior putamen predominantly involved cerebellar areas. The dorsolateral frontal area overlapped as a dopamine-dependent cortical region that was positively connected with the anterior and posterior putamen. On the other hand, cortical areas where functional connectivity from the posterior cingulate was negatively correlated with dopaminergic status in the posterior putamen were localized in the left anterior prefrontal area and the parietal area. Additionally, functional connectivity between the anterior putamen and mesiofrontal areas was negatively coupled with striatal dopamine levels. The present study demonstrated that dopamine-dependent functional network connectivity secondary to PD pathology mainly exhibits a consistent pattern, albeit with some variation. These patterns may reflect the diverse effects of dopaminergic medication on parkinsonian-related motor and cognitive performance.