Project description:Pancreatic beta-cells couple the oxidation of glucose to the secretion of insulin. Apart from the canonical K(ATP)-dependent glucose-stimulated insulin secretion (GSIS), there are important K(ATP)-independent mechanisms involving both anaplerosis and mitochondrial GTP (mtGTP). How mtGTP that is trapped within the mitochondrial matrix regulates the cytosolic calcium increases that drive GSIS remains a mystery. Here we have investigated whether the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) is the GTPase linking hydrolysis of mtGTP made by succinyl-CoA synthetase (SCS-GTP) to an anaplerotic pathway producing phosphoenolpyruvate (PEP). Although cytosolic PEPCK (PEPCK-C) is absent, PEPCK-M message and protein were detected in INS-1 832/13 cells, rat islets, and mouse islets. PEPCK enzymatic activity is half that of primary hepatocytes and is localized exclusively to the mitochondria. Novel (13)C-labeling strategies in INS-1 832/13 cells and islets measured substantial contribution of PEPCK-M to the synthesis of PEP. As high as 30% of PEP in INS-1 832/13 cells and 41% of PEP in rat islets came from PEPCK-M. The contribution of PEPCK-M to overall PEP synthesis more than tripled with glucose stimulation. Silencing the PEPCK-M gene completely inhibited GSIS underscoring its central role in mitochondrial metabolism-mediated insulin secretion. Given that mtGTP synthesized by SCS-GTP is an indicator of TCA flux that is crucial for GSIS, PEPCK-M is a strong candidate to link mtGTP synthesis with insulin release through anaplerotic PEP cycling.
Project description:Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally downregulated protein 8 (NEDD8). Here, we show that neddylation in mouse liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver reduces gluconeogenic capacity and the hyperglycemic actions of counter-regulatory hormones. Furthermore, people with type 2 diabetes display elevated hepatic neddylation levels. Mechanistically, fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues-K278, K342, and K387. We find that mutating the three PCK1 lysines that are neddylated reduces their gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.
Project description:MLK4, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, has been implicated in cancer progression. However, its role in lung adenocarcinoma has not been characterized. Here, we showed that MLK4 was overexpressed in a significant subset of lung adenocarcinoma, associated with a worse prognosis, and exerted an oncogenic function in vitro and in vivo. Bioinformatics analyses of clinical datasets identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a novel target of MLK4. We validated that MLK4 regulated PCK1 expression at transcriptional level, by phosphorylating the transcription factor CREB, which in turn mediated PCK1 expression. We further demonstrated that PCK1 is an oncogenic factor in lung adenocarcinoma. Given the importance of PCK1 in the regulation of cellular metabolism, we next deciphered the metabolic effects of MLK4. Metabolic and mass spectrometry analyses showed that MLK4 knockdown led to significant reduction of glycolysis and decreased levels of glycolytic pathway metabolites including phosphoenolpyruvate and lactate. Finally, the promoter analysis of MLK4 unravelled a binding site of transcription factor KLF5, which in turn, positively regulated MLK4 expression in lung adenocarcinoma. In summary, we have revealed a KLF5-MLK4-PCK1 signalling pathway involved in lung tumorigenesis and established an unusual link between MAP3K signalling and cancer metabolism.
Project description:The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeogenesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Mn2+ ions for activity; Mg2+ ions reduce the Km for Mn2+ by about 60 fold. Its specificity constant is 100 fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (kcat=2.7 s-1). When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis.
Project description:BackgroundPhosphoenolpyruvate carboxykinase (PCK) has been almost exclusively recognized as a critical enzyme in gluconeogenesis, especially in the liver and kidney. Accumulating evidence has shown that the enhanced activity of PCK leads to increased glucose output and exacerbation of diabetes, whereas the defects of PCK result in lethal hypoglycemia. Genetic mutations or polymorphisms are reported to be related to the onset and progression of diabetes in humans.Scope of reviewRecent studies revealed that the PCK pathway is more complex than just gluconeogenesis, depending on the health or disease condition. Dysregulation of PCK may contribute to the development of obesity, cardiac hypertrophy, stroke, and cancer. Moreover, a regulatory network with multiple layers, from epigenetic regulation, transcription regulation, to posttranscription regulation, precisely tunes the expression of PCK. Deciphering the molecular basis that regulates PCK may pave the way for developing practical strategies to treat metabolic dysfunction.Major conclusionsIn this review, we summarize the metabolic and non-metabolic roles of the PCK enzyme in cells, especially beyond gluconeogenesis. We highlight the distinct functions of PCK isoforms (PCK1 and PCK2), depict a detailed network regulating PCK's expression, and discuss its clinical relevance. We also discuss the therapeutic potential targeting PCK and the future direction that is highly in need to better understand PCK-mediated signaling under diverse conditions.
Project description:We used an allelogenic Cre/loxP gene targeting strategy in mice to determine the role of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in hepatic energy metabolism. Mice that lack this enzyme die within 3 days of birth, while mice with at least a 90% global reduction of PEPCK, or a liver-specific knockout of PEPCK, are viable. Surprisingly, in both cases these animals remain euglycemic after a 24-h fast. However, mice without hepatic PEPCK develop hepatic steatosis after fasting despite up-regulation of a variety of genes encoding free fatty acid-oxidizing enzymes. Also, marked alterations in the expression of hepatic genes involved in energy metabolism occur in the absence of any changes in plasma hormone concentrations. Given that a ninefold elevation of the hepatic malate concentration occurs in the liver-specific PEPCK knockout mice, we suggest that one or more intermediary metabolites may directly regulate expression of the affected genes. Thus, hepatic PEPCK may function more as an integrator of hepatic energy metabolism than as a determinant of gluconeogenesis.
Project description:Neddylation is a post-translational mechanism that adds a ubiquitin-like protein, namely neural precursor cell expressed developmentally down-regulated protein 8, to target proteins, with yet-unknown consequences. Here we show in mice that neddylation in liver is modulated by nutrient availability. Inhibition of neddylation in mouse liver (either pharmacologically or genetically) reduces gluconeogenic capacity and the hyperglycemic actions of counterregulatory hormones (glucagon, adrenaline and glucocorticoids). Further, people with obesity and type 2 diabetes (compared to people with obesity and normoglycemia) display elevated hepatic neddylation levels that correlate positively with fasting glucose levels. Mechanistically, we determined that fasting or caloric restriction of mice leads to neddylation of phosphoenolpyruvate carboxykinase 1 (PCK1) at three lysine residues—K278, K342 and K387. PCK1 is a key control point for gluconeogenesis regulation that can be post-translationally modified by acetylation and phosphorylation, but to date no modifications are known to affect its gluconeogenic capacity. Of note, we find that mutating the three PCK1 lysines that are neddylated reduces its gluconeogenic activity rate. Molecular dynamics simulations show that neddylation of PCK1 could re-position two loops surrounding the catalytic center into an open configuration, rendering the catalytic center more accessible. Our study reveals that neddylation of PCK1 provides a finely-tuned mechanism of controlling glucose metabolism by linking whole nutrient availability to metabolic homeostasis.
Project description:BackgroundTumor cells may aberrantly express metabolic enzymes to adapt to their environment for survival and growth. Targeting cancer-specific metabolic enzymes is a potential therapeutic strategy. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the conversion of oxaloacetate to phosphoenolpyruvate and links the tricarboxylic acid cycle and glycolysis/gluconeogenesis. Mitochondrial PEPCK (PEPCK-M), encoded by PCK2, is an isozyme of PEPCK and is distributed in mitochondria. Overexpression of PCK2 has been identified in many human cancers and demonstrated to be important for the survival program initiated upon metabolic stress in cancer cells. We evaluated the expression status of PEPCK-M and investigated the function of PEPCK-M in breast cancer.MethodsWe checked the expression status of PEPCK-M in breast cancer samples by immunohistochemical staining. We knocked down or overexpressed PCK2 in breast cancer cell lines to investigate the function of PEPCK-M in breast cancer.ResultsPEPCK-M was highly expressed in estrogen receptor-positive (ER+ ) breast cancers. Decreased cell proliferation and G0 /G1 arrest were induced in ER+ breast cancer cell lines by knockdown of PCK2. PEPCK-M promoted the activation of mTORC1 downstream signaling molecules and the E2F1 pathways in ER+ breast cancer. In addition, glucose uptake, intracellular glutamine levels, and mTORC1 pathways activation by glucose and glutamine in ER+ breast cancer were attenuated by PCK2 knockdown.ConclusionPEPCK-M promotes proliferation and cell cycle progression in ER+ breast cancer via upregulation of the mTORC1 and E2F1 pathways. PCK2 also regulates nutrient status-dependent mTORC1 pathway activation in ER+ breast cancer. Further studies are warranted to understand whether PEPCK-M is a potential therapeutic target for ER+ breast cancer.
Project description:Mitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate-limiting enzyme that plays critical roles in multiple physiological processes. The decompensation of PCK2 leads to various energy metabolic disorders. However, little is known regarding the effects of PCK2 on osteogenesis by human mesenchymal stem cells (hMSCs). Here, we report a novel function of PCK2 as a positive regulator of MSCs osteogenic differentiation. In addition to its well-known role in anabolism, we demonstrate that PCK2 regulates autophagy. PCK2 deficiency significantly suppressed autophagy, leading to the impairment of osteogenic capacity of MSCs. On the other hand, autophagy was promoted by PCK2 overexpression; this was accompanied by increased osteogenic differentiation of MSCs. Moreover, PCK2 regulated osteogenic differentiation of MSCs via AMP-activated protein kinase (AMPK)/unc-51 like autophagy activating kinase 1(ULK1)-dependent autophagy. Collectively, our present study unveiled a novel role for PCK2 in integrating autophagy and bone formation, providing a potential target for stem cell-based bone tissue engineering that may lead to improved therapies for metabolic bone diseases. Stem Cells 2019;37:1542-1555.
Project description:Phosphoenolpyruvate carboxykinase (PCK) plays a critical role in cytosolic gluconeogenesis, and defects in PCK1 cause a fasting-aggravated metabolic disease with hypoglycemia and lactic acidosis. However, there are two genes encoding PCK, and the role of the mitochondrial resident PCK (encoded by PCK2) is unclear, since gluconeogenesis is cytosolic. We identified three patients in two families with biallelic variants in PCK2. One has compound heterozygous variants (p.Ser23Ter/p.Pro170Leu), and the other two (siblings) have homozygous p.Arg193Ter variation. All three patients have weakness and abnormal gait, an absence of PCK2 protein, and profound reduction in PCK2 activity in fibroblasts, but no obvious metabolic phenotype. Nerve conduction studies showed reduced conduction velocities with temporal dispersion and conduction block compatible with a demyelinating peripheral neuropathy. To validate the association between PCK2 variants and clinical disease, we generated a mouse knockout model of PCK2 deficiency. The animals present abnormal nerve conduction studies and peripheral nerve pathology, corroborating the human phenotype. In total, we conclude that biallelic variants in PCK2 cause a neurogenetic disorder featuring abnormal gait and peripheral neuropathy.