Project description:The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regulator of basal immunity in Arabidopsis, and the production of a reactive oxygen burst mediated by respiratory burst oxidases homologues (RBOH). Screening of a core collection of 48 Arabidopsis ecotypes using CBEL uncovered a large variability in CBEL-induced necrotic responses. Analysis of non-responsive CBEL lines Ws-4, Oy-0, and Bla-1 revealed that Ws-4 and Oy-0 were also impaired in the production of the oxidative burst and expression of defence genes, whereas Bla-1 was partially affected in these responses. Infection tests using two Phytophthora parasitica strains, Pp310 and Ppn0, virulent and avirulent, respectively, on the Col-0 line showed that BAK1 and RBOH mutants were susceptible to Ppn0, suggesting that some immune responses controlled by these genes, but not CBEL-induced cell death, are required for Phytophthora parasitica resistance. However, Ws-4, Oy-0, and Bla-1 lines were not affected in Ppn0 resistance, showing that natural variability in CBEL responsiveness is not correlated to Phytophthora susceptibility. Overall, the results uncover a BAK1- and RBOH-dependent CBEL-triggered immunity essential for Phytophthora resistance and suggest that natural quantitative variation of basal immunity triggered by conserved general elicitors such as CBEL does not correlate to Phytophthora susceptibility.
Project description:Phytophthora blight is one of the most destructive diseases of pepper (Capsicum annuum L.) globally. The APETALA2/Ethylene Responsive Factors (AP2/ERF) genes play a crucial role in plant response to biotic stresses but, to date, have not been studied in the context of Phytophthora resistance in pepper. Here, we documented potential roles for the pepper CaAP2/ERF064 gene in inducing cell death and conferring resistance to Phytophthora capsici (P. capsici) infection. Results revealed that the N-terminal, AP2 domain, and C-terminal of CaAP2/ERF064 protein is responsible for triggering cell death in Nicotiana benthamiana (N. benthamiana). Moreover, the transcription of CaAP2/ERF064 in plant is synergistically regulated by the Methyl-Jasmonate (MeJA) and ethephon (ET) signaling pathway. CaAP2/ERF064 was found to regulate the expression of CaBPR1, which is a pathogenesis-related (PR) gene of pepper. Furthermore, the silencing of CaAP2/ERF064 compromised the pepper plant resistance to P.capsici by reducing the transcript level of defense-related genes CaBPR1, CaPO2, and CaSAR82, while the ectopic expression of CaAP2/ERF064 in N. benthamiana plant elevated the expression level of NbPR1b and enhanced resistance to P.capsici. These results suggest that CaAP2/ERF064 could positively regulate the defense response against P. capsici by modulating the transcription of PR genes in the plant.
Project description:Carbohydrate-binding module family 1 (CBM1) is a cellulose-binding domain that is almost exclusively found in fungi and oomycetes. CBM1-containing proteins (CBPs) have diverse domain architectures and play pivotal roles in the plant-microbe interaction. However, only a few CBPs have been functionally investigated. In this study, we identified PcCBP3 in an oomycete pathogen, Phytophthora capsici. PcCBP3 contains two tandem CBM1 domains and its orthologs from other Phytophthora species exhibit diversity including gene loss, pseudogenization, variations in sequences, and domain structures. PcCBP3 is upregulated during infection and knockout of PcCBP3 results in significantly decreased virulence. Moreover, PcCBP3 requires signal peptide to induce BAK1-dependent cell death in Nicotiana benthamiana. Further studies indicate that PcCBP3-triggered cell death and plant immunity require its N-terminal region, which is conserved in CBM1-containing proteins and other small, secreted, cysteine-rich protein from oomycetes. These results suggest that PcCBP3 is an apoplastic effector and could be perceived by the plant immune system.
Project description:BackgroundEffector proteins function not only as toxins to induce plant cell death, but also enable pathogens to suppress or evade plant defense responses. NLP-like proteins are considered to be effector proteins, and they have been isolated from bacteria, fungi, and oomycete plant pathogens. There is increasing evidence that NLPs have the ability to induce cell death and ethylene accumulation in plants.ResultsWe evaluated the expression patterns of 11 targeted PcNLP genes by qRT-PCR at different time points after infection by P. capsici. Several PcNLP genes were strongly expressed at the early stages in the infection process, but the expression of other PcNLP genes gradually increased to a maximum at late stages of infection. The genes PcNLP2, PcNLP6 and PcNLP14 showed the highest expression levels during infection by P. capsici. The necrosis-inducing activity of all targeted PcNLP genes was evaluated using heterologous expression by PVX agroinfection of Capsicum annuum and Nicotiana benthamiana and by Western blot analysis. The members of the PcNLP family can induce chlorosis or necrosis during infection of pepper and tobacco leaves, but the chlorotic or necrotic response caused by PcNLP genes was stronger in pepper leaves than in tobacco leaves. Moreover, PcNLP2, PcNLP6, and PcNLP14 caused the largest chlorotic or necrotic areas in both host plants, indicating that these three genes contribute to strong virulence during infection by P. capsici. This was confirmed through functional evaluation of their silenced transformants. In addition, we further verified that four conserved residues are putatively active sites in PcNLP1 by site-directed mutagenesis.ConclusionsEach targeted PcNLP gene affects cells or tissues differently depending upon the stage of infection. Most PcNLP genes could trigger necrotic or chlorotic responses when expressed in the host C. annuum and the non-host N. benthamiana. Individual PcNLP genes have different phytotoxic effects, and PcNLP2, PcNLP6, and PcNLP14 may play important roles in symptom development and may be crucial for virulence, necrosis-inducing activity, or cell death during infection by P. capsici.
Project description:Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.
Project description:Phytophthora capsici is a soil-borne plant pathogen with a wide range of hosts. The pathogen secretes a large array of effectors during infection of host plants, including Crinkler (CRN) effectors. However, it remains largely unknown on the roles of these effectors in virulence especially in P. capsici. In this study, we identified a cell death-inducing CRN effector PcCRN4 using agroinfiltration approach. Transient expression of PcCRN4 gene induced cell death in N. benthamiana, N. tabacum and Solanum lycopersicum. Overexpression of the gene in N. benthamiana enhanced susceptibility to P. capsici. Subcellular localization results showed that PcCRN4 localized to the plant nucleus, and the localization was required for both of its cell death-inducing activity and virulent function. Silencing PcCRN4 gene in P. capsici significantly reduced pathogen virulence. The expression of the pathogenesis-related gene PR1b in N. benthamiana was significantly induced when plants were inoculated with PcCRN4-silenced P. capsici transformant compared to the wilt-type. Callose deposits were also abundant at sites inoculated with PcCRN4-silenced transformant, indicating that silencing of PcCRN4 in P. capsici reduced the ability of the pathogen to suppress plant defenses. Transcriptions of cell death-related genes were affected when PcCRN4-silenced line were inoculated on Arabidopsis thaliana, suggesting that PcCRN4 may induce cell death by manipulating cell death-related genes. Overall, our results demonstrate that PcCRN4 is a virulence essential effector and it needs target to the plant nucleus to suppress plant immune responses.
Project description:Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.
Project description:EDS1 (Enhanced Disease Susceptibility 1) plays a crucial role in both effector-triggered immunity activation and plant basal defence. However, whether pathogen effectors can target EDS1 or an EDS1-related pathway to manipulate immunity is rarely reported. In this study, we identified a Phytophthora capsici Avirulence Homolog (Avh) RxLR (Arg-any amino acid-Leu-Arg) effector PcAvh103 that interacts with EDS1. We demonstrated that PcAvh103 can facilitate P. capsici infection and is required for pathogen virulence. Furthermore, genetic evidence showed that PcAvh103 contributes to virulence through targeting EDS1. Finally, PcAvh103 specifically interacts with the lipase domain of EDS1 and can promote the disassociation of EDS1-PAD4 (Phytoalexin Deficient 4) complex in planta. Together, our results revealed that the P. capsici RxLR effector PcAvh103 targets host EDS1 to suppress plant immunity, probably through disrupting the EDS1-PAD4 immune signalling pathway.
Project description:Phytophthora blight severely threatens global pepper production. Grafting bolsters plant disease resistance, but the underlying molecular mechanisms remain unclear. In this study, we used P. capsici-resistant strain 'ZCM334' and susceptible strain 'Early Calwonder' for grafting. Compared to self-rooted 'Early Calwonder' plants, 'ZCM334' grafts exhibited delayed disease onset, elevated resistance, and reduced leaf cell damage, showcasing the potential of grafting in enhancing pepper resistance to P. capsici. Proteomic analysis via the iTRAQ technology unveiled 478 and 349 differentially expressed proteins (DEPs) in the leaves and roots, respectively, between the grafts and self-rooted plants. These DEPs were linked to metabolism and cellular processes, stimulus responses, and catalytic activity and were significantly enriched in the biosynthesis of secondary metabolites, carbon fixation in photosynthetic organizations, and pyruvate metabolism pathways. Twelve DEPs exhibiting consistent expression trends in both leaves and roots, including seven related to P. capsici resistance, were screened. qRT-PCR analysis confirmed a significant correlation between the protein and transcript levels of DEPs after P. capsici inoculation. This study highlights the molecular mechanisms whereby grafting enhances pepper resistance to Phytophthora blight. Identification of key genes provides a foundation for studying the regulatory network governing the resistance of pepper to P. capsici.
Project description:Citrus canker, caused by the bacterial pathogen Xanthomonas citri ssp. citri (Xcc), has been attributed to millions of dollars in loss or damage to commercial citrus crops in subtropical production areas of the world. Since identification of resistant plants is one of the most effective methods of disease management, the ability to screen for resistant seedlings plays a key role in the production of a long-term solution to canker. Here, an inverse correlation between reactive oxygen species (ROS) production by the plant and the ability of Xcc to grow and form lesions on infected plants is reported. Based on this information, a novel screening method that can rapidly identify citrus seedlings that are less susceptible to early infection by Xcc was devised by measuring ROS accumulation triggered by a 22-amino acid sequence of the conserved N-terminal part of flagellin (flg22) from X. citri ssp. citri (Xcc-flg22). In addition to limiting disease symptoms, ROS production was also correlated with the expression of basal defense-related genes such as the pattern recognition receptors LRR8 and FLS2, the leucine-rich repeat receptor-like protein RLP12, and the defense-related gene PR1, indicating an important role for pathogen-associated molecular pattern-triggered immunity (PTI) in determining resistance to citrus canker. Moreover, the differential expression patterns observed amongst the citrus seedlings demonstrated the existence of genetic variations in the PTI response among citrus species/varieties.