Project description:Rapid eye movement (REM) sleep in mammals is associated with wakelike cortical and hippocampal activation and concurrent postural muscle atonia. Research during the past 5 decades has revealed the details of the neural circuitry regulating REM sleep and muscle atonia during this state. REM-active glutamatergic neurons in the sublaterodorsal nucleus (SLD) of the dorsal pons are critical for generation for REM sleep atonia. Descending projections from SLD glutamatergic neurons activate inhibitory premotor neurons in the ventromedial medulla (VMM) and in the spinal cord to antagonize the glutamatergic supraspinal inputs on the motor neurons during REM sleep. REM sleep behavior disorder (RBD) consists of simple behaviors (i.e., twitching, jerking) and complex behaviors (i.e., defensive behavior, talking). Animal research has lead to the hypothesis that complex behaviors in RBD are due to SLD pathology, while simple behaviors of RBD may be due to less severe SLD pathology or dysfunction of the VMM, ventral pons, or spinal cord.
Project description:ObjectiveTo investigate structural and functional connectivity changes in brain olfactory-related structures in a longitudinal prospective cohort of isolated REM sleep behavior disorder (iRBD) and their clinical correlations, longitudinal evolution, and predictive values for phenoconversion to overt synucleinopathies, especially Lewy body diseases.MethodsThe cohort included polysomnography-confirmed iRBD patients and controls. Participants underwent baseline assessments including olfactory tests, neuropsychological evaluations, the Movement Disorders Society-Unified Parkinson's Disease Rating Scale, 3T brain MRI, and 18 F-FP-CIT PET scans. Voxel-based morphometry (VBM) was performed to identify regions of atrophy in iRBD, and volumes of relevant olfactory-related regions of interest (ROI) were estimated. Subgroups of patients underwent repeated volumetric MRI and resting-state functional MRI (fMRI) scans after four years.ResultsA total of 51 iRBD patients were included, with 20 of them converting to synucleinopathy (mean time to conversion 3.08 years). Baseline VBM analysis revealed atrophy in the right olfactory cortex and gyrus rectus in iRBD. Subsequent ROI comparisons with controls showed atrophy in the amygdala. These olfactory-related atrophies tended to be associated with worse depression, anxiety, and urinary problems in iRBD. Amygdala 18 F-FP-CIT uptake tended to be reduced in iRBD patients with hyposmia (nonsignificant after multiple comparison correction) and correlated with urinary problems. Resting-state fMRI of 23 patients and 32 controls revealed multiple clusters with aberrant olfactory-related functional connectivity. Hypoconnectivity between the putamen and olfactory cortex was associated with mild parkinsonian signs in iRBD. Longitudinal analysis of volumetric volumetric MRI in 22 iRBD patients demonstrated four-year progression of olfactory-related atrophy. Cox regression analysis revealed that this atrophy significantly predicted phenoconversion.InterpretationProgressive atrophy of central olfactory structures may be a potential indicator of Lewy body disease progression in iRBD.
Project description:Study objectivesIdiopathic rapid eye movement (REM) sleep behavior disorder (RBD) is a harbinger of synuclein-mediated neurodegenerative diseases. It is unknown if this also applies to isolated REM sleep without atonia (RWA). We performed a long-term follow-up investigation of subjects with isolated RWA.MethodsParticipants were recruited from 50 subjects with isolated RWA who were identified at the sleep laboratory of the Department of Neurology at the Medical University of Innsbruck between 2003 and 2005. Eligible subjects underwent follow-up clinical examination, polysomnography, and assessment of neurodegenerative biomarkers (cognitive impairment, finger speed deficit, impaired color vision, olfactory dysfunction, orthostatic hypotension, and substantia nigra hyperechogenicity).ResultsAfter a mean of 8.6 ± 0.9 y, 1 of 14 participating subjects (7.3%) progressed to RBD. Ten of 14 RWA subjects (71.4%) were positive for at least one neurodegenerative biomarker. Substantia nigra hyperechogenicity and presence of mild cognitive impairment were both present in 4 of 14 subjects with isolated RWA. Electromyographic activity measures increased significantly from baseline to follow-up polysomnography ("any" mentalis and both anterior tibialis muscles: 32.5 ± 9.4 versus 52.2 ± 16.6%; p = 0.004).ConclusionThis study provides first evidence that isolated RWA is an early biomarker of synuclein-mediated neurodegeneration. These results will have to be replicated in larger studies with longer observational periods. If confirmed, these disease findings have implications for defining at-risk cohorts for Parkinson disease.
Project description:Values for normative REM sleep without atonia (RSWA) remain unclear. Older age and male sex are associated with greater RSWA, and isolated elevated RSWA has been reported. We aimed to describe normative RSWA and characterize isolated RSWA frequency in adults without REM sleep behavior disorder (RBD). We visually quantified phasic, "any," and tonic RSWA in the submentalis (SM) and anterior tibialis (AT) muscles, and the automated Ferri REM Atonia Index during polysomnography in adults without RBD aged 21-88. We calculated RSWA percentiles across age and sex deciles and compared RSWA in older (≥ 65) versus younger (<65) men and women. Isolated RSWA (exceeding diagnostic RBD cutoffs, or >95th percentile) frequency was also determined. Overall, 95th percentile RSWA percentages were SM phasic, any, tonic = 8.6%, 9.1%, 0.99%; AT phasic and "any" = 17.0%; combined SM/AT phasic, "any" = 22.3%, 25.5%; and RAI = 0.85. Most phasic RSWA burst durations were ≤1.0 s (85th percentiles: SM = 1.07, AT = 0.86 seconds). Older men had significantly higher AT RSWA than older women and younger patients (all p < 0.04). Twenty-nine (25%, 18 men) had RSWA exceeding the cohort 95th percentile, while 17 (14%, 12 men) fulfilled diagnostic cutoffs for phasic or automated RBD RSWA thresholds. RSWA levels are highest in older men, mirroring the demographic characteristics of RBD, suggesting that older men frequently have altered REM sleep atonia control. These data establish normative adult RSWA values and thresholds for determination of isolated RSWA elevation, potentially aiding RBD diagnosis and discussions concerning incidental RSWA in clinical sleep medicine practice.