Project description:BackgroundBone mineral density is an important indicator of osteoporosis, and its variation with volatile organic compounds exposure has rarely been studied. However, the relationship between chloroform (an essential volatile organic compounds component) and bone mineral density remains unclear. Consequently, we aimed to explore the relationship between chloroform alone and bone mineral density or bone mineral content.MethodsHerein, 2,553 individuals aged 18 and above from the National Health and Nutrition Examination Surveys (NHANES) in 2009-2010, 2013-2014, and 2017-2020, were included. We employed two independent t-tests and multi-linear regression models to statistically assess the relationship between chloroform exposure and BMD/BMC in the spine and femoral area.ResultsA "V"-shaped correlation between chloroform exposure and bone mineral density or bone mineral content (BMD/BMC) was observed in the unadjusted model, particularly in the Ward's triangle and femoral neck as a whole. A negative correlation was specifically observed for the Ward's triangle BMD/BMC and L4 BMD/BMC. On the other hand, in the adjusted model, a dominantly negative correlation between the L4 BMC and chloroform exposure was observed over a range of exposure levels. The subgroup analysis revealed a negative correlation between chloroform concentrations and BMC in the femur and spine, especially in women and the 65-80 age population.ConclusionOur study revealed a "V" shaped correlation between chloroform and BMD/BMC of the femur and spine in U.S. adults. This finding highlights the fact that prolonged exposure to chloroform may cause the changes in BMD/BMC.
Project description:PurposeIt has been reported that bone is the primary organ for manganese (Mn) accumulation, but the association between manganese and bone loss remains debatable. Therefore, this study aimed to evaluate the relationship between blood manganese and bone mineral density/bone mineral content (BMD/BMC) by using a representative sample from the National Health and Nutrition Examination Survey (NHANES).MethodsA total of 9732 subjects over the age of 18 with available data were enrolled in this study. The relationship between blood manganese and BMD/BMC of the total body, spine and femoral regions was evaluated using multivariate linear regression models. Subgroup analyses were also performed.ResultsWe observed a negative association between blood manganese and BMD/BMC in the femoral neck and total body in the fully adjusted model, especially femoral neck BMD in women aged 50-70 years.ConclusionIn brief, people exposed to manganese should be aware of the increased risk of osteopenia or osteoporosis. Besides, due to the lack of available data, there are no definite values for the tolerable upper intake level (UL), average requirement (AR) and population reference intake (PRI) of manganese. The results of our study may provide some references for the establishment of AR, PRI and UL of Mn.
Project description:IntroductionNephrolithiasis is associated with an increased fracture risk, but predictors of bone mineral density (BMD) in stone formers (SFs) remain poorly defined.MethodsWe conducted a retrospective analysis in the Bern Kidney Stone Registry (BKSR), an observational cohort of kidney SFs. Inclusion criteria were age ≥18 years and ≥1 past stone episode. Participants with non-calcium (Ca)-containing kidney stones, a history of primary hyperparathyroidism or antiresorptive or anabolic bone treatment were excluded. Multivariable linear regression analyses were used to assess the association of blood and 24-hours urine parameters and stone composition with BMD at the lumbar spine and femoral neck.ResultsIn the analysis, 504 participants were included, mean age was 46 years, and 76% were male. In multivariable analyses, fasting (β: -0.031; P = 0.042), postload (β: -0.059; P = 0.0028) and Δ postload - fasting (β: -0.053; P = 0.0029) urine Ca-to-creatinine ratios after 1 week of a sodium- and Ca- restricted diet and Ca oxalate dihydrate stone content (β: -0.042; P = 0.011) were negatively associated with z scores at the lumbar spine. At the femoral neck, alkaline phosphatase (β: -0.035; P = 0.0034) and parathyroid hormone (PTH) (β: -0.035; P = 0.0026) were negatively associated with z scores, whereas 24-hours urine Ca (β: 0.033; P = 0.0085), magnesium (β: 0.043; P = 3.5 × 10-4), and potassium (β: 0.032; P = 0.012) correlated positively with z scores at the femoral neck.ConclusionOur study reveals distinct predictors of BMD in SFs. Commonly available clinical parameters, such as kidney stone composition results, can be used to identify SFs at risk for low BMD.
Project description:BackgroundOsteoporosis is a major health concern for both men and women, and associated fractures incur substantial economic burden. While there are a multitude of studies on bone mineral density (BMD) and liver diseases, not many studies have assessed the association between liver enzyme levels and BMD in homogeneous populations.MethodsThe current study investigated the association between serum liver enzyme levels and BMD at various sites in Koreans. Out of 21,517 surveyees of the 5th Korean National Health and Nutrition Examination Survey (2010-2012), 7160 participants' data on BMD, serum liver enzymes, and full covariate data were included for cross-sectional analysis. BMD at the femoral neck, lumbar spine, entire femur, and whole body was assessed using dual energy X-ray absorptiometry (DEXA), and liver enzymes included aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma(γ)-glutamyl transferase (GGT) levels. Differences in participant characteristics by BMD and liver enzyme levels were analyzed, and complex sample design regression analysis adjusted for multiple covariates was performed to assess the relationship between liver enzymes and BMD.ResultsNegative associations were seen with GGT and BMD at all sites (P ≤ 0.02), ALT with lumbar spine (P = 0.0013), and AST with lumbar BMD (P = 0.0009). In particular, GGT presented strong negative associations with BMD in postmenopausal women and elder men.ConclusionsThis study demonstrates a negative relationship between liver enzyme levels and BMD, and suggests that a significant association exists between osteoporosis/decreased BMD and liver disorders.
Project description:BackgroundThe association between lipid and bone metabolism, particularly the role of high-density lipoprotein cholesterol (HDL-C) in regulating bone mineral density (BMD), is of significant interest. Despite numerous studies, findings on this relationship remain inconclusive, especially since evidence from large, sexually diverse Chinese populations is sparse. This study, therefore, investigates the correlation between HDL-C and lumbar BMD in people of different genders using extensive population-based data from physical examinations conducted in China.MethodsData from a cross-sectional survey involving 20,351 individuals aged > = 20 years drawn from medical records of health check-ups at the Health Management Centre of the Henan Provincial People's Hospital formed the basis of this study. The primary objective was to determine the correlation between HDL-C levels and lumbar BMD across genders. The analysis methodology included demographic data analysis, one-way ANOVA, subgroup analyses, multifactorial regression equations, smoothed curve fitting, and threshold and saturation effect analyses.ResultsMultifactorial regression analysis revealed a significant inverse relationship between HDL-C levels and lumbar BMD in both sexes, controlling for potential confounders (Male: β = -8.77, 95% CI -11.65 to -5.88, P < 0.001; Female: β = -4.77, 95% CI -8.63 to -0.90, P = 0.015). Subgroup and threshold saturation effect analyses indicated a stronger association in males, showing that increased HDL-C correlates with reduced lumbar BMD irrespective of age and body mass index (BMI). The most significant effect was observed in males with BMI > 28 kg/m2 and HDL-C > 1.45 mmol/L and in females with a BMI between 24 and 28 kg/m2.ConclusionElevated HDL-C is associated with decreased bone mass, particularly in obese males. These findings indicate that individuals with high HDL-C levels should receive careful clinical monitoring to mitigate osteoporosis risk.Trial registrationThe research protocol received ethics approval from the Ethics Committee at Beijing Jishuitan Hospital, in conformity with the Declaration of Helsinki guidelines (No. 2015-12-02). These data are a contribution of the China Health Quantitative CT Big Data Research team, registered at clinicaltrials.gov (code: NCT03699228).
Project description:The purpose of the study was to determine whether running is associated with greater bone mineral density (BMD) by comparing the BMD of regularly active male runners (AR) with inactive nonrunner male controls (INC). This cross-sectional study recruited 327 male AR and 212 male INC (aged 18-65) via a stratified recruitment strategy. BMD of the whole body (WB) and partial segments (spine, lumbar spine (LS), leg, hip, femoral neck (FN), and arm for each side) were measured by dual-energy x-ray absorptiometry (DXA) and lower leg dominance (dominant-D/nondominant-ND) was established by functional testing. An ANCOVA was used to compare AR and INC. The AR had greater BMD for all segments of the lower limb (p<0.05), but similar BMD for all segments of the upper limb (p>0.05) compared with INC. Based on the pairwise comparison of age groups, AR had greater BMD of the ND leg in every age group compared with INC (p<0.05). AR had grater BMD of the D leg in every age group except for (26-35 and 56-65) compare with INC (p<0.05). In the youngest age group (18-25), AR had greater BMD in every measured part of lower extremities (legs, hips, femoral necks) compared with INC (p<0.05). In the 46-55 age group AR had greater BMD than INC (p < 0.05) only in the WB, D Leg, D neck, and ND leg. In the 56-65 age group AR had greater BMD than INC (p<0.05) only in the ND leg. Overall, AR had greater BMD compared with INC in all examined sites except for the upper limbs, supporting the notion that running may positively affect bone parameters. However, the benefits differ in the skeletal sites specifically, as the legs had the highest BMD difference between AR and INC. Moreover, the increase in BMD from running decreased with age.
Project description:BackgroundThere are several mechanisms via which increased protein intake might maintain or improve bone mineral density (BMD), but current evidence for an association or effect is inconclusive. The objectives of this study were to investigate the association between dietary protein intake (total, plant and animal) with BMD (spine and total body) and the effects of protein supplementation on BMD.MethodsIndividual data from four trials that included either (pre-)frail, undernourished or healthy older adults (aged ≥65 years) were combined. Dietary intake was assessed with food records (2, 3 or 7 days) and BMD with dual-energy X-ray absorptiometry (DXA). Associations and effects were assessed by adjusted linear mixed models.ResultsA total of 1570 participants [57% women, median (inter-quartile range): age 71 (68-75) years] for which at least total protein intake and total body BMD were known were included in cross-sectional analyses. In fully adjusted models, total protein intake was associated with higher total body and spine BMD [beta (95% confidence interval): 0.0011 (0.0006-0.0015) and 0.0015 (0.0007-0.0023) g/cm2 , respectively]. Animal protein intake was associated with higher total body and spine BMD as well [0.0011 (0.0007-0.0016) and 0.0017 (0.0010-0.0024) g/cm2 , respectively]. Plant protein intake was associated with a lower total body and spine BMD [-0.0010 (-0.0020 to -0.0001) and -0.0019 (-0.0034 to -0.0004) g/cm2 , respectively]. Associations were similar between sexes. Participants with a high ratio of animal to plant protein intake had higher BMD. In participants with an adequate calcium intake and sufficient serum 25(OH)D concentrations, the association between total protein intake with total body and spine BMD became stronger. Likewise, the association between animal protein intake with total body BMD was stronger. In the longitudinal analyses, 340 participants [58% women, median (inter-quartile range): age 75 (70-81) years] were included. Interventions of 12 or 24 weeks with protein supplementation or protein supplementation combined with resistance exercise did not lead to significant improvements in BMD.ConclusionsAn association between total and animal protein intake with higher BMD was found. In contrast, plant protein intake was associated with lower BMD. Research is warranted to further investigate the added value of dietary protein alongside calcium and vitamin D for BMD improvement, especially in osteopenic or osteoporotic individuals. Moreover, more research on the impact of a plant-based diet on bone health is needed.
Project description:BackgroundLow bone mineral density (BMD) and subsequent skeletal fragility have emerged as a long-term complication of phenylketonuria (PKU).ObjectiveTo determine if there are differences in BMD and body composition between male and female participants with PKU.MethodsFrom our randomized, crossover trial [1] of participants with early-treated PKU who consumed a low-phenylalanine (Phe) diet combined with amino acid medical foods (AA-MF) or glycomacropeptide medical foods (GMP-MF), a subset of 15 participants (6 males, 9 females, aged 15-50 y, 8 classical and 7 variant PKU) completed one dual energy X-ray absorptiometry (DXA) scan and 3-day food records after each dietary treatment. Participants reported lifelong compliance with AA-MF. In a crossover design, 8 participants (4 males, 4 females, aged 16-35 y) provided a 24-h urine collection after consuming AA-MF or GMP-MF for 1-3 weeks each.ResultsMale participants had significantly lower mean total body BMD Z-scores (means ± SE, males = - 0.9 ± 0.4; females, 0.2 ± 0.3; p = 0.01) and tended to have lower mean L1-4 spine and total femur BMD Z-scores compared to female participants. Only 50% percent of male participants had total body BMD Z-scores above - 1.0 compared to 100% of females (p = 0.06). Total femur Z-scores were negatively correlated with intake of AA-MF (r = - 0.58; p = 0.048). Males tended to consume more grams of protein equivalents per day from AA-MF (means ± SE, males: 67 ± 6 g, females: 52 ± 4 g; p = 0.057). Males and females demonstrated similar urinary excretion of renal net acid, magnesium and sulfate; males showed a trend for higher urinary calcium excretion compared to females (means ± SE, males: 339 ± 75 mg/d, females: 228 ± 69 mg/d; p = 0.13). Females had a greater percentage of total fat mass compared to males (means ± SE, males: 24.5 ± 4.8%, females: 36.5 ± 2.5%; p = 0.047). Mean appendicular lean mass index was similar between males and females. Male participants had low-normal lean mass based on the appendicular lean mass index.ConclusionsMales with PKU have lower BMD compared with females with PKU that may be related to higher intake of AA-MF and greater calcium excretion. The trial was registered at www.clinicaltrials.gov as NCT01428258.
Project description:BackgroundNumerous studies have demonstrated shared risk factors and pathophysiologic mechanisms between osteoporosis and cardiovascular disease. High-density lipoprotein cholesterol (HDL-C) and platelets have long been recognized as crucial factors for cardiovascular health. The platelet to HDL-C ratio (PHR) combines platelet count and high-density lipoprotein cholesterol (HDL-C) level, It is a novel biomarker for metabolic syndrome and cardiovascular disease. The platelet to HDL-C ratio (PHR) possibly reflects the balance between proinflammatory and anti-inflammatory states in the body. Therefore, we hypothesized that changes in PHR ratios may predict a predisposition to pro-inflammatory and increased bone resorption. However, the relationship between the platelet to HDL-C ratio (PHR) and bone mineral density (BMD) remains insufficiently understood. This study aimed to elucidate the relationship between the platelet to HDL-C ratio (PHR) index and bone mineral density (BMD).MethodsData from the NHANES 2005-2018 were analyzed, excluding adults with missing key variables and specific conditions. Nonlinear relationships were explored by fitting smoothed curves and generalized additive models, with threshold effects employed to calculate inflection points. Additionally, subgroup analyses and interaction tests were conducted.ResultsThe study included 13,936 individuals with a mean age of 51.19 ± 16.65 years. Fitted smoothed curves and generalized additive models revealed a nonlinear, inverted U-shaped relationship between the two variables. Threshold effect analysis showed a significant negative association between PHR and total femur bone mineral density (BMD) beyond the inflection point of platelet to HDL-C ratio (PHR) 33.301. Subgroup analyses showed that a significant interaction between these two variables was observed only in the age and sex subgroups (P-interaction < 0.05).ConclusionsOur study identified a complex, nonlinear, inverted U-shaped relationship between platelet to HDL-C ratio (PHR) and total femur bone mineral density (BMD). These findings underscore the importance of maintaining optimal PHR levels to support bone health, especially in high-risk populations.