Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies.
Ontology highlight
ABSTRACT: Human herpesvirus 8 (HHV-8; also known as Kaposi's sarcoma-associated herpesvirus) is the causative agent of Kaposi's sarcoma and certain B-cell lymphomas. In most infected cells, HHV-8 establishes a latent infection characterized by the expression of latency-associated nuclear antigen (LANA) encoded by open reading frame 73. Although unrelated by sequence, there are functional similarities between LANA and the EBNA-1 protein of Epstein-Barr virus. Both accumulate as subnuclear speckles and are required for maintenance of the viral episome. EBNA-1 also regulates viral gene expression and is required for cell immortalization, suggesting that LANA performs similar functions in the context of HHV-8 infection. Here we show that LANA forms stable dimers, or possibly higher-order multimers, and that this is mediated by a conserved region in the C terminus. By expressing a series of truncations, we show that both the N- and C-terminal regions localize to the nucleus, although only the C terminus accumulates as nuclear speckles characteristic of the intact protein. Lastly, we show that LANA can function as a potent transcriptional repressor when tethered to constitutively active promoters via a heterologous DNA-binding domain. Domains in both the N and C termini mediate repression. This suggests that one function of LANA is to suppress the expression of the viral lytic genes or cellular genes involved in the antiviral response.
SUBMITTER: Schwam DR
PROVIDER: S-EPMC116365 | biostudies-literature | 2000 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA