Unknown

Dataset Information

0

Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways.


ABSTRACT: IFN-alpha/beta plays an essential role in innate immunity against viral and bacterial infection. Among the proteins induced by IFN-alpha/beta are the ubiquitin-like ISG15 protein and its E1- (Ube1L) and E2- (UbcH8) conjugating enzymes, leading to the conjugation of ISG15 to cellular proteins. It is likely that ISG15 conjugation plays an important role in antiviral response because a human virus, influenza B virus, inhibits ISG15 conjugation. However, the biological function of ISG15 modification remains unknown, largely because only a few human ISG15 target proteins have been identified. Here we purify ISG15-modified proteins from IFN-beta-treated human (HeLa) cells by using double-affinity selection and use mass spectroscopy to identify a large number (158) of ISG15 target proteins. Eight of these proteins were subjected to further analysis and verified to be ISG15 modified in IFN-beta-treated cells, increasing the likelihood that most, if not all, targets identified by mass spectroscopy are bona fide ISG15 targets. Several of the targets are IFN-alpha/beta-induced antiviral proteins, including PKR, MxA, HuP56, and RIG-I, providing a rationale for the inhibition of ISG15 conjugation by influenza B virus. Most targets are constitutively expressed proteins that function in diverse cellular pathways, including RNA splicing, chromatin remodeling/polymerase II transcription, cytoskeleton organization and regulation, stress responses, and translation. These results indicate that ISG15 conjugation impacts nuclear as well as cytoplasmic functions. By targeting a wide array of constitutively expressed proteins, ISG15 conjugation greatly extends the repertoire of cellular functions that are affected by IFN-alpha/beta.

SUBMITTER: Zhao C 

PROVIDER: S-EPMC1177427 | biostudies-literature | 2005 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways.

Zhao Chen C   Denison Carilee C   Huibregtse Jon M JM   Gygi Steven S   Krug Robert M RM  

Proceedings of the National Academy of Sciences of the United States of America 20050711 29


IFN-alpha/beta plays an essential role in innate immunity against viral and bacterial infection. Among the proteins induced by IFN-alpha/beta are the ubiquitin-like ISG15 protein and its E1- (Ube1L) and E2- (UbcH8) conjugating enzymes, leading to the conjugation of ISG15 to cellular proteins. It is likely that ISG15 conjugation plays an important role in antiviral response because a human virus, influenza B virus, inhibits ISG15 conjugation. However, the biological function of ISG15 modification  ...[more]

Similar Datasets

| S-EPMC2887317 | biostudies-literature
| S-EPMC2836655 | biostudies-literature
| S-EPMC10831901 | biostudies-literature
| S-EPMC3164161 | biostudies-literature
| S-EPMC7328124 | biostudies-literature
| S-EPMC5476576 | biostudies-literature
| S-EPMC3739789 | biostudies-literature
| S-EPMC5008018 | biostudies-literature
| S-EPMC2527107 | biostudies-literature
| S-EPMC3260183 | biostudies-literature