Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation.
Ontology highlight
ABSTRACT: The soil fungus Trichoderma atroviride, a mycoparasite, responds to a number of external stimuli. In the presence of a fungal host, T. atroviride produces hydrolytic enzymes and coils around the host hyphae. In response to light or nutrient depletion, asexual sporulation is induced. In a biomimetic assay, different lectins induce coiling around nylon fibers; coiling in the absence of lectins can be induced by applying cyclic AMP (cAMP) or the heterotrimeric G-protein activator mastoparan. We isolated a T. atroviride G-protein alpha-subunit (Galpha) gene (tgal) belonging to the fungal subfamily with the highest similarity to the Galpha1 class. Generated transgenic lines that overexpress Galpha show very delayed sporulation and coil at a higher frequency. Furthermore, transgenic lines that express an activated mutant protein with no GTPase activity do not sporulate and coil at a higher frequency. Lines that express an antisense version of the gene are hypersporulating and coil at a much lower frequency in the biomimetic assay. The loss of Tgal in these mutants correlates with the loss of GTPase activity stimulated by the peptide toxin Mas-7. The application of Mas-7 to growing mycelial colonies raises intracellular cAMP levels, suggesting that Tgal can activate adenylyl cyclase. In contrast, cAMP levels and cAMP-dependent protein kinase activity drop when diffusible host signals are encountered and the mycoparasitism-related genes ech42 and prb1 are highly expressed. Mycoparasitic signaling is unlikely to be a linear pathway from host signals to increased cAMP levels. Our results demonstrate that the product of the tga1 gene is involved in both coiling and conidiation.
SUBMITTER: Rocha-Ramirez V
PROVIDER: S-EPMC117994 | biostudies-literature | 2002 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA