Thermal and conformational stability of Ssh10b protein from archaeon Sulfolobus shibattae.
Ontology highlight
ABSTRACT: The secondary structure of the DNA binding protein Ssh10b is largely unaffected by change in temperature between 25 degrees C and 85 degrees C, indicating that the protein is highly thermostable. Here, we report the temperature-dependent equilibrium denaturation of Ssh10b in the presence of guanidine hydrochloride (GdnHCl). It was found that the transition midpoint values of the temperature (T(m)), and changes of enthalpy (DeltaH(m)) and entropy (DeltaS(m)) of Ssh10b unfolding were linearly decreasing with increasing GdnHCl concentration. The true values of the thermodynamic parameters, T(m)=402 K, DeltaH(m)=590+/-40 kJ x mol(-1) and DeltaS(m)=1.4+/-0.15 kJ x T(-1) x mol(-1), were obtained by linear extrapolation to 0 M GdnHCl. The value of the heat capacity change of Ssh10b unfolding, DeltaC(p)=3.8+/-0.2 kJ x T(-1) x mol(-1) (approx. 19 J T(-1) x mol residue(-1)), was obtained from the measured thermodynamic parameters. This is significantly smaller than that of the average value for mesophilic proteins (50 J.K(-1) x mol residue(-1)) or the value calculated from the Ssh10b structural data (64 J T(-1) x mol residue(-1)). A consequence of the small DeltaC(p) is that the DeltaG of Ssh10b is larger than that of mesophilic proteins, while the values of DeltaH and T*DeltaS are smaller. The small DeltaC(p) of Ssh10b appears to result mainly from the presence of compactness in the denatured state.
SUBMITTER: Xu S
PROVIDER: S-EPMC1182282 | biostudies-literature | 2004 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA