Unknown

Dataset Information

0

Activationless electron transfer through the hydrophobic core of cytochrome c oxidase.


ABSTRACT: Electron transfer (ET) within proteins occurs by means of chains of redox intermediates that favor directional and efficient electron delivery to an acceptor. Individual ET steps are energetically characterized by the electronic coupling V, driving force DeltaG, and reorganization energy lambda. lambda reflects the nuclear rearrangement of the redox partners and their environment associated with the reactions; lambda approximately 700-1,100 meV (1 eV = 1.602 x 10(-19) J) has been considered as a typical value for intraprotein ET. In nonphotosynthetic systems, functional ET is difficult to assess directly. However, using femtosecond flash photolysis of the CO-poised membrane protein cytochrome c oxidase, the intrinsic rate constant of the low-DeltaG electron injection from heme a into the heme a(3)-Cu(B) active site was recently established at (1.4 ns)(-1). Here, we determine the temperature dependence of both the rate constant and DeltaG of this reaction and establish that this reaction is activationless. Using a quantum mechanical form of nonadiabatic ET theory and common assumptions for the coupled vibrational modes, we deduce that lambda is <200 meV. It is demonstrated that the previously accepted value of 760 meV actually originates from the temperature dependence of Cu(B)-CO bond breaking. We discuss that low-DeltaG, low-lambda reactions are common for efficiently channeling electrons through chains that are buried inside membrane proteins.

SUBMITTER: Jasaitis A 

PROVIDER: S-EPMC1182432 | biostudies-literature | 2005 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Activationless electron transfer through the hydrophobic core of cytochrome c oxidase.

Jasaitis Audrius A   Rappaport Fabrice F   Pilet Eric E   Liebl Ursula U   Vos Marten H MH  

Proceedings of the National Academy of Sciences of the United States of America 20050721 31


Electron transfer (ET) within proteins occurs by means of chains of redox intermediates that favor directional and efficient electron delivery to an acceptor. Individual ET steps are energetically characterized by the electronic coupling V, driving force DeltaG, and reorganization energy lambda. lambda reflects the nuclear rearrangement of the redox partners and their environment associated with the reactions; lambda approximately 700-1,100 meV (1 eV = 1.602 x 10(-19) J) has been considered as a  ...[more]

Similar Datasets

| S-EPMC3132828 | biostudies-literature
| S-EPMC5574378 | biostudies-literature
| S-EPMC1304015 | biostudies-literature
| S-EPMC3428721 | biostudies-literature
| S-EPMC3145682 | biostudies-literature
| S-EPMC1147883 | biostudies-other
| S-EPMC3246025 | biostudies-literature
| S-EPMC3003029 | biostudies-literature
| S-EPMC4220735 | biostudies-literature
| S-EPMC3516563 | biostudies-literature