Unknown

Dataset Information

0

Phosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source.


ABSTRACT: Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found to encode a secreted enzyme which is active as a 5' nucleotidase and a UDP-sugar hydrolase. This enzyme was synthesized and secreted into the medium when C. glutamicum was starved for inorganic phosphate. UshA was required for growth of C. glutamicum on AMP and UDP-glucose as sole sources of phosphorus. Thus, in contrast to UshA from E. coli, C. glutamicum UshA is an important component of the phosphate starvation response of this species and is necessary to access nucleotides and related compounds as sources of phosphorus.

SUBMITTER: Rittmann D 

PROVIDER: S-EPMC1183354 | biostudies-literature | 2005 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphate starvation-inducible gene ushA encodes a 5' nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source.

Rittmann Doris D   Sorger-Herrmann Ulrike U   Wendisch Volker F VF  

Applied and environmental microbiology 20050801 8


Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5' nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found  ...[more]

Similar Datasets

| S-EPMC165763 | biostudies-literature
| S-EPMC2953031 | biostudies-literature
| S-EPMC1347282 | biostudies-literature
| S-EPMC6739363 | biostudies-literature
2018-08-28 | GSE117530 | GEO
| S-EPMC8634428 | biostudies-literature
| S-EPMC3406113 | biostudies-literature
| S-EPMC321289 | biostudies-literature
2020-03-24 | GSE138829 | GEO
| S-EPMC2546626 | biostudies-literature