Role of viral evolutionary rate in HIV-1 disease progression in a linked cohort.
Ontology highlight
ABSTRACT: BACKGROUND: The actual relationship between viral variability and HIV disease progression and/or non-progression can only be extrapolated through epidemiologically-linked HIV-infected cohorts. The rarity of such cohorts accents their existence as invaluable human models for a clear understanding of molecular factors that may contribute to the various rates of HIV disease. We present here a cohort of three patients with the source termed donor A--a non-progressor and two recipients called B and C. Both recipients gradually progressed to HIV disease and patient C has died of AIDS recently. By conducting 15 near full-length genome (8.7 kb) analysis from longitudinally derived patient PBMC samples enabled us to investigate the extent of molecular factors, which govern HIV disease progression. RESULTS: Four time points were successfully amplified for patient A, 4 for patient B and 7 from patient C. Using phylogenetic analysis our data confirms the epidemiological-linkage and transmission of HIV-1 from a non-progressor to two recipients. Following transmission the two recipients gradually progressed to AIDS and one died of AIDS. Viral divergence, selective pressures, recombination, and evolutionary rates of HIV-1 in each member of the cohort were investigated over time. Genetic recombination and selective pressure was evident in the entire cohort. However, there was a striking correlation between evolutionary rate and disease progression. CONCLUSION: Non-progressing individuals have the potential to transmit pathogenic variants, which in other host can lead to faster HIV disease progression. This was evident from our study and the accelerated disease progression in the recipient members of he cohort correlated with faster evolutionary rate of HIV-1, which is a unique aspect of this study.
SUBMITTER: Mikhail M
PROVIDER: S-EPMC1190217 | biostudies-literature | 2005
REPOSITORIES: biostudies-literature
ACCESS DATA