Identification and characterization of Neospora caninum cyclophilin that elicits gamma interferon production.
Ontology highlight
ABSTRACT: Gamma interferon (IFN-gamma) response is essential to the development of a host protective immunity in response to infections by intracellular parasites. Neosporosis, an infection caused by the intracellular protozoan parasite Neospora caninum, is fatal when there is a complete lack of IFN-gamma in the infected host. However, the mechanism by which IFN-gamma is elicited by the invading parasite is unclear. This study has identified a microbial protein in the N. caninum tachyzoite N. caninum cyclophilin (NcCyP) as a major component of the parasite responsible for the induction of IFN-gamma production by bovine peripheral blood mononuclear cells (PBMC) and antigen-specific CD4(+) T cells. NcCyP has high sequence homology (86%) with Toxoplasma gondii 18-kDa CyP with a calculated molecular mass of 19.4 kDa. NcCyP is a secretory protein with a predicted signal peptide of 17 amino acids. Abundant NcCyP was detected in whole-cell N. caninum tachyzoite lysate antigen (NcAg) and N. caninum tachyzoite culture supernatant. In N. caninum tachyzoite culture supernatant, three NcCyP bands of 19, 22, and 24 kDa were identified. NcAg stimulated high levels of IFN-gamma production by PBMC and CD4(+) T cells. The IFN-gamma-inducing effect of NcAg was blocked by cyclosporine, a specific ligand for CyP, in a dose-dependent manner. Furthermore, cyclosporine abolished IFN-gamma production by PBMC from naïve cows as well as PBMC and CD4(+) T cells from infected/immunized cows. These results indicate that the N. caninum tachyzoite naturally produces a potent IFN-gamma-inducing protein, NcCyP, which may be important for parasite survival as well as host protection.
SUBMITTER: Tuo W
PROVIDER: S-EPMC1201279 | biostudies-literature | 2005 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA