Dissimilatory iron reduction and odor indicator abatement by biofilm communities in swine manure microcosms.
Ontology highlight
ABSTRACT: Animal waste odors arising from products of anaerobic microbial metabolism create community relations problems for livestock producers. We investigated a novel approach to swine waste odor reduction: the addition of FeCl(3), a commonly used coagulant in municipal wastewater treatment, to stimulate degradation of odorous compounds by dissimilatory iron-reducing bacteria (DIRB). Two hypotheses were tested: (i) FeCl(3) is an effective source of redox-active ferric iron (Fe(3+)) for dissimilatory reduction by bacteria indigenous to swine manure, and (ii) dissimilatory iron reduction results in significant degradation of odorous compounds within 7 days. Our results demonstrated that Fe(3+) from FeCl(3) was reduced biologically as well as chemically in laboratory microcosms prepared with prefiltered swine manure slurry and limestone gravel, which provided pH buffering and a substrate for microbial biofilm development. Addition of a 1-g liter(-1) equivalent concentration of Fe(3+) from FeCl(3), but not from presynthesized ferrihydrite, caused initial, rapid solids flocculation, chemical Fe(3+) reduction, and E(h) increase, followed by a 2-day lag period. Between 2 and 6 days of incubation, increases in Fe(2+) concentrations were accompanied by significant reductions in concentrations of volatile fatty acids used as odor indicators. Increases in Fe(2+) concentrations between 2 and 6 days did not occur in FeCl(3)-treated microcosms that were sterilized by gamma irradiation or amended with NaN(3), a respiratory inhibitor. DNA sequences obtained from rRNA gene amplicons of bacterial communities in FeCl(3)-treated microcosms were closely related to Desulfitobacterium spp., which are known representatives of DIRB. Use of iron respiration to abate wastewater odors warrants further investigation.
SUBMITTER: Castillo-Gonzalez HA
PROVIDER: S-EPMC1214689 | biostudies-literature | 2005 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA