Unknown

Dataset Information

0

Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption.


ABSTRACT: The aerobic electron transport chain in Mycobacterium smegmatis can terminate in one of three possible terminal oxidase complexes. The structure and function of the electron transport pathway leading from the menaquinol-menaquinone pool to the cytochrome bc1 complex and terminating in the aa3-type cytochrome c oxidase was characterized. M. smegmatis strains with mutations in the bc1 complex and in subunit II of cyctochome c oxidase were found to be profoundly growth impaired, confirming the importance of this respiratory pathway for mycobacterial growth under aerobic conditions. Disruption of this pathway resulted in an adaptation of the respiratory network that is characterized by a marked up-regulation of cydAB, which encodes the bioenergetically less efficient and microaerobically induced cytochrome bd-type menaquinol oxidase that is required for the growth of M. smegmatis under O2-limiting conditions. Further insights into the adaptation of this organism to rerouting of the electron flux through the branch terminating in the bd-type oxidase were revealed by expression profiling of the bc1-deficient mutant strain using a partial-genome microarray of M. smegmatis that is enriched in essential genes. Although the expression profile was indicative of an increase in the reduced state of the respiratory chain, blockage of the bc1-aa3 pathway did not induce the sentinel genes of M. smegmatis that are induced by oxygen starvation and are regulated by the DosR two-component regulator.

SUBMITTER: Matsoso LG 

PROVIDER: S-EPMC1236647 | biostudies-literature | 2005 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption.

Matsoso Limenako G LG   Kana Bavesh D BD   Crellin Paul K PK   Lea-Smith David J DJ   Pelosi Assunta A   Powell David D   Dawes Stephanie S SS   Rubin Harvey H   Coppel Ross L RL   Mizrahi Valerie V  

Journal of bacteriology 20050901 18


The aerobic electron transport chain in Mycobacterium smegmatis can terminate in one of three possible terminal oxidase complexes. The structure and function of the electron transport pathway leading from the menaquinol-menaquinone pool to the cytochrome bc1 complex and terminating in the aa3-type cytochrome c oxidase was characterized. M. smegmatis strains with mutations in the bc1 complex and in subunit II of cyctochome c oxidase were found to be profoundly growth impaired, confirming the impo  ...[more]

Similar Datasets

| S-EPMC6299076 | biostudies-literature
2021-03-23 | PXD020038 | Pride
| S-EPMC3535674 | biostudies-literature
| S-EPMC3974799 | biostudies-literature
2020-10-07 | GSE159080 | GEO
| S-EPMC4510652 | biostudies-literature
| S-EPMC122428 | biostudies-literature
| S-EPMC7987180 | biostudies-literature
| S-EPMC7583968 | biostudies-literature
| S-EPMC1162466 | biostudies-other