Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens.
Ontology highlight
ABSTRACT: A signal turnover system is an essential component of many genetic regulatory mechanisms. The best-known example is the ubiquitin-dependent protein degradation system that exists in many organisms. We found that Agrobacterium tumefaciens adopts a unique signal turnover system to control exiting from a quorum-sensing mode. A. tumefaciens regulates Ti plasmid conjugal transfer by a quorum-sensing signal, N-3-oxo-octanoyl homoserine lactone (3OC8HSL), also known as Agrobacterium autoinducer. By using Tn5 mutagenesis and a functional cloning approach, we identified two genes that are involved in switching from a conjugal quorum-sensing mode to a nonconjugal mode at the onset of stationary phase. First, we located attJ, which codes for an IclR-type suppressor that regulates the second gene attM. The latter encodes a homologue of N-acylhomoserine lactone (AHL)-lactonase. Mass spectrometry analysis shows that the enzyme encoded by attM is an AHL-lactonase that hydrolyzes the lactone ring of 3OC8HSL. In wild-type A. tumefaciens, attM expression is initially suppressed by AttJ but significantly elevated at the stationary phase accompanied a sharp decline in 3OC8HSL. DNA gel retardation analysis shows that AttJ specifically binds to the promoter that controls AHL-lactonase expression. Mutation of attJ resulted in constitutive production of AHL-lactonase that abolishes 3OC8HSL accumulation and Ti plasmid transfer. These data suggest that A. tumefaciens has a sophisticated multicomponent quorum-sensing signal turnover system, allowing the cell to sense a change in growth and adjust cellular activities accordingly.
SUBMITTER: Zhang HB
PROVIDER: S-EPMC123700 | biostudies-literature | 2002 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA