ABSTRACT: Listeria monocytogenes is a food-borne bacterial pathogen that is able to grow at refrigeration temperatures. To investigate microbial gene expression associated with cold acclimation, we used a differential cDNA cloning procedure known as selective capture of transcribed sequences (SCOTS) to identify bacterial RNAs that were expressed at elevated levels in bacteria grown at 10 degrees C compared to those grown at 37 degrees C. A total of 24 different cDNA clones corresponding to open reading frames in the L. monocytogenes strain EGD-e genome were obtained by SCOTS. These included cDNAs for L. monocytogenes genes involved in previously described cold-adaptive responses (flaA and flp), regulatory adaptive responses (rpoN, lhkA, yycJ, bglG, adaB, and psr), general microbial stress responses (groEL, clpP, clpB, flp, and trxB), amino acid metabolism (hisJ, trpG, cysS, and aroA), cell surface alterations (fbp, psr, and flaA), and degradative metabolism (eutB, celD, and mleA). Four additional cDNAs were obtained corresponding to genes potentially unique to L. monocytogenes and showing no significant similarity to any other previously described genes. Northern blot analyses confirmed increased steady-state levels of RNA for all members of a subset of genes examined during growth at a low temperature. These results indicated that L. monocytogenes acclimation to growth at 10 degrees C likely involves amino acid starvation, oxidative stress, aberrant protein synthesis, cell surface remodeling, alterations in degradative metabolism, and induction of global regulatory responses.