Unknown

Dataset Information

0

Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration.


ABSTRACT: Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures formed during chemotaxis. This enrichment correlates with increased phosphorylation of key cytoskeletal substrates for PKA, including the vasodilator-stimulated phosphoprotein (VASP) and the protein tyrosine phosphatase containing a PEST motif. Importantly, inhibition of PKA activity or its ability to interact with A kinase anchoring proteins inhibited the activity of the Rac GTPase within pseudopodia. This effect correlated with both decreased guanine nucleotide exchange factor activity and increased GTPase activating protein activity. Finally, inhibition of PKA anchoring, like inhibition of total PKA activity, inhibited pseudopod formation and chemotactic cell migration. These data demonstrate that spatial regulation of PKA via anchoring is an important facet of normal chemotactic cell movement.

SUBMITTER: Howe AK 

PROVIDER: S-EPMC1242330 | biostudies-literature | 2005 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spatial regulation of the cAMP-dependent protein kinase during chemotactic cell migration.

Howe Alan K AK   Baldor Linda C LC   Hogan Brian P BP  

Proceedings of the National Academy of Sciences of the United States of America 20050921 40


Historically, the cAMP-dependent protein kinase (PKA) has a paradoxical role in cell motility, having been shown to both facilitate and inhibit actin cytoskeletal dynamics and cell migration. In an effort to understand this dichotomy, we show here that PKA is regulated in subcellular space during cell migration. Immunofluorescence microscopy and biochemical enrichment of pseudopodia showed that type II regulatory subunits of PKA and PKA activity are enriched in protrusive cellular structures for  ...[more]

Similar Datasets

| S-EPMC2857138 | biostudies-literature
| S-EPMC123128 | biostudies-literature
| S-EPMC2652333 | biostudies-literature
| S-EPMC6048987 | biostudies-literature
| S-EPMC3399962 | biostudies-literature
| S-EPMC7696304 | biostudies-literature
| S-EPMC3597442 | biostudies-literature
| S-EPMC2561045 | biostudies-literature
| S-EPMC2862470 | biostudies-literature
| S-EPMC3933935 | biostudies-literature