Project description:BackgroundSeoul virus (SEOV) is a member of hantavirus family, which is transmitted to humans by Rattus rattus and Rattus norvegicus. Diagnosing SEOV infection is difficult because the clinical presentations are often undifferentiated with other viral or bacterial infections and assays to test antibodies seroconversion and RNA detection are not available in resource-limited setting like Indonesia.Case presentationWe report two confirmed cases of SEOV infection from Indonesia. Here, we illustrate the clinical presentations, hematology and biochemistry profiles, and outcomes of the two cases. Phylogenetic analysis revealed that SEOV sequences have highest homology to isolates obtained from rodents in Indonesia.ConclusionsThis report highlights the importance of considering SEOV infection in febrile patients with lymphopenia, thrombocytopenia, and elevation of liver enzyme despite the absence of hemorrhagic manifestations and renal syndromes. The public health importance of rodent-borne diseases such as SEOV infection urges an integrated epidemiological surveillance both in humans and rodents in Indonesia.
Project description:Patients with H7N9 avian flu concurrent with severe acute respiratory distress syndrome (ARDS) usually have a poor clinical outcome. Prone position ventilation (PPV) has been shown to improve the prognosis of patients with severe ARDS. This study explored the effects of PPV on the respiratory and circulatory mechanics of H7N9-infected patients with severe ARDS.Individuals admitted to four hospitals designated for H7N9 patients in Guangdong province were treated with PPV, and their clinical data were recorded before and after receiving PPV.Six of 20 critically ill patients in the ICU received PPV. After treatment with 35 PPV sessions, the oxygenation index (OI) values of the six patients when measured post-PPV and post-supine position ventilation (SPV) were significantly higher than those measured pre-PPV (P < 0.05).The six patients showed no significant differences in their values for respiratory rate (RR), peak inspiratory pressure (PIP), tidal volume (TV) or arterial partial pressure of carbon dioxide (PaCO2) when compared pre-PPV, post-PPV, and post-SPV. Additionally, there were no significant differences in the mean values for arterial pressure (MAP), cardiac index (CI), central venous pressure (CVP), heart rate (HR), lactic acid (LAC) levels or the doses of norepinephrine (NE) administered when compared pre-PPV, post-PPV, and post-SPV.PPV provided improved oxygenation that was sustained after returning to a supine position, and resulted in decreased carbon dioxide retention. PPV can thus serve as an alternative lung protective ventilation strategy for use in patients with H7N9 avian flu concurrent with severe ARDS.
Project description:Influenza A viruses of subtype H9N2 are wide spread among poultry and other mammalian species. Crossing the species barrier from poultry to human occurred in recent years creating a pandemic of H9N2 virus. It is known that the pathogenicity of H9N2 is lower than H5N1. Nonetheless, it is important to establish the molecular functions of H9N2 viral proteins. We studied mutations in the polymerase protein PB2 of H9N2 from different strains and compared it with the highly pathogenic H5N1. The mutation M294T was found to be important in the N-myristoylation domain of Ck/UP/2573/India/04(H9N2) isolate. Prediction of secondary structures and PROSITE motif assignments were performed for PB2 to gain functional insight. Subsequently, the effect of mutations in secondary structures among strains is discussed.
Project description:BackgroundAlthough vaccination can be a useful tool for control of avian influenza epidemics, it might engender emergence of a vaccine-resistant strain. Field and experimental studies show that some avian influenza strains acquire resistance ability against vaccination. We investigated, in the context of the emergence of a vaccine-resistant strain, whether a vaccination program can prevent the spread of infectious disease. We also investigated how losses from immunization by vaccination imposed by the resistant strain affect the spread of the disease.Methods and findingsWe designed and analyzed a deterministic compartment model illustrating transmission of vaccine-sensitive and vaccine-resistant strains during a vaccination program. We investigated how the loss of protection effectiveness impacts the program. Results show that a vaccination to prevent the spread of disease can instead spread the disease when the resistant strain is less virulent than the sensitive strain. If the loss is high, the program does not prevent the spread of the resistant strain despite a large prevalence rate of the program. The epidemic's final size can be larger than that before the vaccination program. We propose how to use poor vaccines, which have a large loss, to maximize program effects and describe various program risks, which can be estimated using available epidemiological data.ConclusionsWe presented clear and simple concepts to elucidate vaccination program guidelines to avoid negative program effects. Using our theory, monitoring the virulence of the resistant strain and investigating the loss caused by the resistant strain better development of vaccination strategies is possible.
Project description:We isolated an influenza strain named A/Swine/Fujian/F1/2010 (H1N2) from a pig suspected to be infected with swine flu. The results of electron microscopy, hemagglutination (HA) assay, hemagglutination inhibition (HI) assay, and whole genome sequencing analysis suggest that it was a reassortant virus of swine (H1N1 subtype), human (H3N2 subtype), and avian influenza viruses. To further study the genetic evolution of A/Swine/Fujian/F1/2010 (H1N2), we cloned its whole genome fragments using RT-PCR and performed phylogenetic analysis on the eight genes. As a result, the nucleotide sequences of HA, NA, PB1, PA, PB2, NP, M, and NS gene are similar to those of A/Swine/Shanghai/1/2007(H1N2) with identity of 98.9%, 98.9%, 99.0%, 98.6%, 99.0%, 98.9%, 99.3%, and 99.3%, respectively. Similar to A/Swine/Shanghai/1/2007(H1N2), we inferred that the HA, NP, M, and NS gene fragments of A/Swine/Fujian/F1/2010 (H1N2) strain were derived from classical swine influenza H3N2 subtype, NA and PB1 were derived from human swine influenza H3N2 subtype, and PB2 and PA genes were derived from avian influenza virus. This further validates the role of swine as a "mixer" for influenza viruses.