Unknown

Dataset Information

0

Analysis of a highly flexible conformational immunogenic domain a in hepatitis C virus E2.


ABSTRACT: Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The isolation and characterization of three new HMAbs within domain A for a total of six provide support for this model. All six domain A HMAbs do not neutralize HCV retroviral pseudotype particle (HCVpp) infection on Huh-7 cells, and all six HMAbs have similar binding affinity and maximum binding, B(max), a relative indicator of epitope density, as other neutralizing HMAbs, suggesting that neutralization is epitope specific and not by binding to any surface epitope. The dose-dependent neutralizing activity of CBH-7, an HMAb to a domain C epitope in spatial proximity to domain A, and of CBH-5, a domain B HMAb to a more distant epitope, were tested in the presence and absence of each domain A HMAb. No enhancement or reduction in CBH-7 or CBH-5 neutralizing activity was observed, indicating that the potential induction of nonneutralizing antibodies should not be a central issue for HCV vaccine design. To assess whether domain A is involved in the structural changes as part of a pH-dependent virus envelope fusion process, changes in antibody binding patterns to normal pH and acid pH-treated HCVpp were measured. Antibody binding affinity of HMAbs to HCVpp was not affected by low pH. However, the B(max) values for low-pH-treated HCVpp with antibodies to domain A increased 46%, for domain C (CBH-7) they increased 23%, and for domain B (CBH-5) there was a decrease of 12%. Collectively, the organization and function of HCV E2 antigenic domains are roughly analogous to the large envelope glycoprotein E organizational structure for other flaviviruses with three distinct structural and functional domains.

SUBMITTER: Keck ZY 

PROVIDER: S-EPMC1262592 | biostudies-literature | 2005 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analysis of a highly flexible conformational immunogenic domain a in hepatitis C virus E2.

Keck Zhen-Yong ZY   Li Ta-Kai TK   Xia Jinming J   Bartosch Birke B   Cosset François-Loïc FL   Dubuisson Jean J   Foung Steven K H SK  

Journal of virology 20051101 21


Hepatitis C (HCV) E2 glycoprotein is involved in virus attachment and entry, and its structural organization is largely unknown. Characterization of a panel of human monoclonal antibodies (HMAbs) to HCV by competition studies has led to an immunogenic organization model of E2 with three domains designated A, B, and C and epitopes in each domain having similar structural and functional properties. Domain A contains nonneutralizing epitopes, and domains B and C contain neutralizing epitopes. The i  ...[more]

Similar Datasets

| S-EPMC506923 | biostudies-literature
| S-EPMC5433095 | biostudies-literature
| S-EPMC6015841 | biostudies-literature
| S-EPMC8323887 | biostudies-literature
| S-EPMC4367253 | biostudies-literature
| S-EPMC4831159 | biostudies-literature
| S-EPMC5896302 | biostudies-literature
| S-EPMC8906423 | biostudies-literature
| S-EPMC7659593 | biostudies-literature
| S-EPMC3954638 | biostudies-literature