Project description:Type 1 diabetes is associated with a higher risk of major vascular complications and death. A reliable method that predicted these outcomes early in the disease process would help in risk classification. We therefore developed such a prognostic model and quantified its performance in independent cohorts.Data were analysed from 1,973 participants with type 1 diabetes followed for 7 years in the EURODIAB Prospective Complications Study. Strong prognostic factors for major outcomes were combined in a Weibull regression model. The performance of the model was tested in three different prospective cohorts: the Pittsburgh Epidemiology of Diabetes Complications study (EDC, n?=?554), the Finnish Diabetic Nephropathy study (FinnDiane, n?=?2,999) and the Coronary Artery Calcification in Type 1 Diabetes study (CACTI, n?=?580). Major outcomes included major CHD, stroke, end-stage renal failure, amputations, blindness and all-cause death.A total of 95 EURODIAB patients with type 1 diabetes developed major outcomes during follow-up. Prognostic factors were age, HbA1c, WHR, albumin/creatinine ratio and HDL-cholesterol level. The discriminative ability of the model was adequate, with a concordance statistic (C-statistic) of 0.74. Discrimination was similar or even better in the independent cohorts, the C-statistics being: EDC, 0.79; FinnDiane, 0.82; and CACTI, 0.73.Our prognostic model, which uses easily accessible clinical features can discriminate between type 1 diabetes patients who have a good or a poor prognosis. Such a prognostic model may be helpful in clinical practice and for risk stratification in clinical trials.
Project description:Background and aimsMany countries lack resources to identify patients at risk of developing Type 2 diabetes mellitus (diabetes). We aimed to develop and validate a diabetes risk score based on easily accessible clinical data.MethodsProspective study including 5277 participants (55.0% women, 51.8±10.5 years) free of diabetes at baseline. Comparison with two other published diabetes risk scores (Balkau and Kahn clinical, respectively 5 and 8 variables) and validation on three cohorts (Europe, Iran and Mexico) was performed.ResultsAfter a mean follow-up of 10.9 years, 405 participants (7.7%) developed diabetes. Our score was based on age, gender, waist circumference, diabetes family history, hypertension and physical activity. The area under the curve (AUC) was 0.772 for our score, vs. 0.748 (p<0.001) and 0.774 (p = 0.668) for the other two. Using a 13-point threshold, sensitivity, specificity, positive and negative predictive values (95% CI) of our score were 60.5 (55.5-65.3), 77.1 (75.8-78.2), 18.0 (16.0-20.1) and 95.9 (95.2-96.5) percent, respectively. Our score performed equally well or better than the other two in the Iranian [AUC 0.542 vs. 0.564 (p = 0.476) and 0.513 (p = 0.300)] and Mexican [AUC 0.791 vs. 0.672 (p<0.001) and 0.778 (p = 0.575)] cohorts. In the European cohort, it performed similarly to the Balkau score but worse than the Kahn clinical [AUC 0.788 vs. 0.793 (p = 0.091) and 0.816 (p<0.001)]. Diagnostic capacity of our score was better than the Balkau score and comparable to the Kahn clinical one.ConclusionOur clinically-based score shows encouraging results compared to other scores and can be used in populations with differing diabetes prevalence.
Project description:AimsIt is now understood that almost half of newly diagnosed cases of type 1 diabetes are adult-onset. However, type 1 and type 2 diabetes are difficult to initially distinguish clinically in adults, potentially leading to ineffective care. In this study a machine learning model was developed to identify type 1 diabetes patients misdiagnosed as type 2 diabetes.MethodsIn this retrospective study, a machine learning model was developed to identify misdiagnosed type 1 diabetes patients from a population of patients with a prior type 2 diabetes diagnosis. Using Ambulatory Electronic Medical Records (AEMR), features capturing relevant information on age, demographics, risk factors, symptoms, treatments, procedures, vitals, or lab results were extracted from patients' medical history.ResultsThe model identified age, BMI/weight, therapy history, and HbA1c/blood glucose values among top predictors of misdiagnosis. Model precision at low levels of recall (10 %) was 17 %, compared to <1 % incidence rate of misdiagnosis at the time of the first type 2 diabetes encounter in AEMR.ConclusionsThis algorithm shows potential for being translated into screening guidelines or a clinical decision support tool embedded directly in an EMR system to reduce misdiagnosis of adult-onset type 1 diabetes and implement effective care at the outset.
Project description:BackgroundPrevious conventional models for the prediction of diabetes could be updated by incorporating the increasing amount of health data available and new risk prediction methodology.ObjectiveWe aimed to develop a substantially improved diabetes risk prediction model using sophisticated machine-learning algorithms based on a large retrospective population cohort of over 230,000 people who were enrolled in the study during 2006-2017.MethodsWe collected demographic, medical, behavioral, and incidence data for type 2 diabetes mellitus (T2DM) in over 236,684 diabetes-free participants recruited from the 45 and Up Study. We predicted and compared the risk of diabetes onset in these participants at 3, 5, 7, and 10 years based on three machine-learning approaches and the conventional regression model.ResultsOverall, 6.05% (14,313/236,684) of the participants developed T2DM during an average 8.8-year follow-up period. The 10-year diabetes incidence in men was 8.30% (8.08%-8.49%), which was significantly higher (odds ratio 1.37, 95% CI 1.32-1.41) than that in women at 6.20% (6.00%-6.40%). The incidence of T2DM was doubled in individuals with obesity (men: 17.78% [17.05%-18.43%]; women: 14.59% [13.99%-15.17%]) compared with that of nonobese individuals. The gradient boosting machine model showed the best performance among the four models (area under the curve of 79% in 3-year prediction and 75% in 10-year prediction). All machine-learning models predicted BMI as the most significant factor contributing to diabetes onset, which explained 12%-50% of the variance in the prediction of diabetes. The model predicted that if BMI in obese and overweight participants could be hypothetically reduced to a healthy range, the 10-year probability of diabetes onset would be significantly reduced from 8.3% to 2.8% (P<.001).ConclusionsA one-time self-reported survey can accurately predict the risk of diabetes using a machine-learning approach. Achieving a healthy BMI can significantly reduce the risk of developing T2DM.
Project description:BackgroundDiabetes mellitus is a growing global health challenge and affects patients of all ages. Treatment aims to keep blood glucose levels close to normal and to prevent or delay complications. However, adherence to antidiabetic medicines is often unsatisfactory.PurposeHere, we established and internally validated a medication nonadherence risk nomogram for use in Chinese type 2 diabetes mellitus (T2DM) patients.MethodsThis cross-sectional study was carried out from July-December 2020 on randomly selected T2DM patients visiting a diabetes clinic and included 753 participants. Adherence was analyzed based on an eight-item Morisky Medication Adherence Scale (MMAS-8). Other data, including patient demographics, treatment, complications, and comorbidities, were also collected on questionnaires. Optimization of feature selection to develop the medication nonadherence risk model was achieved using the least absolute shrinkage and selection operator regression model (LASSO). A prediction model comprising features selected from LASSO model was designed by applying multivariable logistic regression analysis. The decision curve analysis, calibration plot, and C-index were utilized to assess the performance of the model in terms of discrimination, calibration, and clinical usefulness. Bootstrapping validation was applied for internal validation.ResultsThe prediction nomogram comprised several factors including sex, marital status, education level, employment, distance, self-monitoringofbloodglucose, disease duration, and dosing frequency of daily hypoglycemics (pills, insulin, or glucagon-like peptide-1). The model exhibited good calibration and good discrimination (C-index = 0.79, 95% CI [0.75-0.83]). In the validation samples, a high C-index (0.75) was achieved. Results of the decision curve analysis revealed that the nonadherence nomogram could be applied in clinical practice in cases where the intervention is decided at a nonadherence possibility threshold of 12%.ConclusionThe number of patients who adhere to anti-diabetes therapy was small. Being single male, having no formal education, employed, far from hospital, long disease duration, and taking antidiabetics twice or thrice daily, had significant negative correlation with medication adherence. Thus, strategies for improving adherence are urgently needed.
Project description:The increasing prevalence of type 2 diabetes mellitus (T2DM) and its complications including cardiovascular disease and chronic kidney disease threaten Korean Americans (KAs). High dietary sodium intake contributes to both conditions. The purpose of the study was to assess dietary sodium consumption and to examine the predictors of sodium intake among KA with T2DM. A total 232 KA who had uncontrolled diabetes participated in this study. The majority of the sample (69%) consumed more sodium than current national guidelines. A high level of energy intake was the strongest predictor for sodium intake with gender and marital status also related. Our findings identified predictive factors to excessive sodium intake and these data support the need for culturally-tailored education about appropriate dietary sodium and energy intake are needed for patients about T2DM.
Project description:ObjectiveMetabolic syndrome (MetS) is a cluster of abdominal obesity, hyperglycemia, hypertension, and dyslipidemia, which increases the risk for type 2 diabetes and cardiovascular diseases (CVDs). Some argue that MetS is not a single disorder because the traditional MetS features do not represent one entity, and they would like to exclude features from MetS. Others would like to add additional features in order to increase predictive ability of MetS. The aim of this study was to identify a MetS model that optimally predicts type 2 diabetes and CVD while still representing a single entity.Research design and methodsIn a random sample (n = 1,928) of the EPIC-NL cohort and a subset of the EPIC-NL MORGEN study (n = 1,333), we tested the model fit of several one-factor MetS models using confirmatory factor analysis. We compared predictive ability for type 2 diabetes and CVD of these models within the EPIC-NL case-cohort study of 545 incident type 2 diabetic subjects, 1,312 incident CVD case subjects, and the random sample, using survival analyses and reclassification.ResultsThe standard model, representing the current MetS definition (EPIC-NL comparative fit index [CFI] = 0.95; MORGEN CFI = 0.98); the standard model excluding blood pressure (EPIC-NL CFI = 0.95; MORGEN CFI = 1.00); and the standard model extended with hsCRP (EPIC-NL CFI = 0.95) had an acceptable model fit. The model extended with hsCRP predicted type 2 diabetes (integral discrimination index [IDI]: 0.34) and CVD (IDI: 0.07) slightly better than did the standard model.ConclusionsIt seems valid to represent the traditional MetS features by a single entity. Extension of this entity with hsCRP slightly improves predictive ability for type 2 diabetes and CVD.
Project description:ObjectiveTwo aims of this study were to develop and validate A) a metric to identify drivers with type 1 diabetes at high risk of future driving mishaps and B) an online intervention to reduce mishaps among high-risk drivers.Research design and methodsTo achieve aim A, in study 1, 371 drivers with type 1 diabetes from three U.S. regions completed a series of established questionnaires about diabetes and driving. They recorded their driving mishaps over the next 12 months. Questionnaire items that uniquely discriminated drivers who did and did not have subsequent driving mishaps were assembled into the Risk Assessment of Diabetic Drivers (RADD) scale. In study 2, 1,737 drivers with type 1 diabetes from all 50 states completed the RADD online. Among these, 118 low-risk (LR) and 372 high-risk (HR) drivers qualified for and consented to participate in a 2-month treatment period followed by 12 monthly recordings of driving mishaps. To address aim B, HR participants were randomized to receive either routine care (RC) or the online intervention "DiabetesDriving.com" (DD.com). Half of the DD.com participants received a motivational interview (MI) at the beginning and end of the treatment period to boost participation and efficacy. All of the LR participants were assigned to RC. In both studies, the primary outcome variable was driving mishaps.ResultsRelated to aim A, in study 1, the RADD demonstrated 61% sensitivity and 75% specificity. Participants in the upper third of the RADD distribution (HR), compared with those in the lower third (LR), reported 3.03 vs. 0.87 mishaps/driver/year, respectively (P < 0.001). In study 2, HR and LR participants receiving RC reported 4.3 and 1.6 mishaps/driver/year, respectively (P < 0.001). Related to aim B, in study 2, MIs did not enhance participation or efficacy, so the DD.com and DD.com + MI groups were combined. DD.com participants reported fewer hypoglycemia-related driving mishaps than HR participants receiving RC (P = 0.01), but more than LR participants receiving RC, reducing the difference between the HR and LR participants receiving RC by 63%. HR drivers differed from LR drivers at baseline across a variety of hypoglycemia and driving parameters.ConclusionsThe RADD identified higher-risk drivers, and identification seemed relatively stable across time, samples, and procedures. This 11-item questionnaire could inform patients at higher risk, and their clinicians, that they should take preventive steps to reduce driving mishaps, which was accomplished in aim B using DD.com.
Project description:ObjectiveThe objective of this study was to create a tool that predicts the risk of mortality in patients with type 2 diabetes.Research design and methodsThis study was based on a cohort of 33,067 patients with type 2 diabetes identified in the Cleveland Clinic electronic health record (EHR) who were initially prescribed a single oral hypoglycemic agent between 1998 and 2006. Mortality was determined in the EHR and the Social Security Death Index. A Cox proportional hazards regression model was created using medication class and 20 other predictor variables chosen for their association with mortality. A prediction tool was created using the Cox model coefficients. The tool was internally validated using repeated, random subsets of the cohort, which were not used to create the prediction model.ResultsFollow-up in the cohort ranged from 1 day to 8.2 years (median 28.6 months), and 3,661 deaths were observed. The prediction tool had a concordance index (i.e., c statistic) of 0.752.ConclusionsWe successfully created a tool that accurately predicts mortality risk in patients with type 2 diabetes. The incorporation of medications into mortality predictions in patients with type 2 diabetes should improve treatment decisions.
Project description:ObjectiveIn this investigation we evaluated nine metabolic indexes from intravenous glucose tolerance tests (IVGTTs) and oral glucose tolerance tests (OGTTs) in an effort to determine their prognostic performance in predicting the development of type 1 diabetes in those with moderate risk, as defined by familial relation to a type 1 diabetic individual, a positive test for islet cell antibodies and insulin autoantibody, but normal glucose tolerance.Research design and methodsSubjects (n = 186) who had a projected risk of 25-50% for developing type 1 diabetes within 5 years were followed until clinical diabetes onset or the end of the study as part of the Diabetes Prevention Trial-Type 1. Prognostic performance of the metabolic indexes was determined using receiver operating characteristic (ROC) curve and survival analyses.ResultsTwo-hour glucose from an OGTT most accurately predicted progression to disease compared with all other metabolic indicators with an area under the ROC curve of 0.67 (95% CI 0.59-0.76), closely followed by the ratio of first-phase insulin response (FPIR) to homeostasis model assessment of insulin resistance (HOMA-IR) with an area under the curve value of 0.66. The optimal cutoff value for 2-h glucose (114 mg/dl) maintained sensitivity and specificity values >0.60. The hazard ratio for those with 2-h glucose ≥ 114 mg/dl compared with those with 2-h glucose <114 mg/dl was 2.96 (1.67-5.22).ConclusionsThe ratio of FPIR to HOMA-IR from an IVGTT provided accuracy in predicting the development of type 1 diabetes similar to that of 2-h glucose from an OGTT, which, because of its lower cost, is preferred. The optimal cutoff value determined for 2-h glucose provides additional guidance for clinicians to identify subjects for potential prevention treatments before the onset of impaired glucose tolerance.