Reliable prediction of transcription factor binding sites by phylogenetic verification.
Ontology highlight
ABSTRACT: We present a statistical methodology that largely improves the accuracy in computational predictions of transcription factor (TF) binding sites in eukaryote genomes. This method models the cross-species conservation of binding sites without relying on accurate sequence alignment. It can be coupled with any motif-finding algorithm that searches for overrepresented sequence motifs in individual species and can increase the accuracy of the coupled motif-finding algorithm. Because this method is capable of accurately detecting TF binding sites, it also enhances our ability to predict the cis-regulatory modules. We applied this method on the published chromatin immunoprecipitation (ChIP)-chip data in Saccharomyces cerevisiae and found that its sensitivity and specificity are 9% and 14% higher than those of two recent methods. We also recovered almost all of the previously verified TF binding sites and made predictions on the cis-regulatory elements that govern the tight regulation of ribosomal protein genes in 13 eukaryote species (2 plants, 4 yeasts, 2 worms, 2 insects, and 3 mammals). These results give insights to the transcriptional regulation in eukaryotic organisms.
SUBMITTER: Li X
PROVIDER: S-EPMC1283155 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA