Project description:A simple and general homology-based method for gene finding was applied to the 2.9-Mb Drosophila melanogaster Adh region, the target sequence of the Genome Annotation Assessment Project (GASP). Each strand of the entire sequence was used as query of the BLOCKS+ database of conserved regions of proteins. This led to functional assignments for more than one-third of the genes and two-thirds of the transposons. Considering the enormous size of the query, the fact that only two false-positive matches were reported emphasizes the high selectivity of protein family-based methods for gene finding. We used the search results to improve BLOCKS+ by identifying compositionally biased blocks. Our results confirm that protein family databases can be used effectively in automated sequence annotation efforts.
Project description:Here we present POCUS (prioritization of candidate genes using statistics), a novel computational approach to prioritize candidate disease genes that is based on over-representation of functional annotation between loci for the same disease. We show that POCUS can provide high (up to 81-fold) enrichment of real disease genes in the candidate-gene shortlists it produces compared with the original large sets of positional candidates. In contrast to existing methods, POCUS can also suggest counterintuitive candidates.
Project description:Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.
Project description:BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ?1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation.
Project description:Gene Ontology (GO) is the most widely accepted attempt to construct a unified and structured vocabulary for the description of genes and their products in any organism. Annotation by GO terms is performed in most of the current genome projects, which besides generality has the advantage of being very convenient for computer based classification methods. However, direct use of GO in small sequencing projects is not easy, especially for species not commonly represented in public databases. We present a software package (GOblet), which performs annotation based on GO terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. The paper also addresses the reliability of automated GO annotations by using a reference set of more than 6000 human proteins. The GOblet server is accessible at http://goblet.molgen.mpg.de.
Project description:Although gene expansion plays an important role in evolution, its identification remains a challenge due to potential errors in genome assembly and annotation. Here, we describe a detailed step-by-step protocol for gene annotation, prediction of genomic gene expansion, and its computational and experimental validation. Finally, we also detail steps to discover functionality of each copy of replicated genes. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021).
Project description:Today, genomic prediction (GP) is an established technology in plant and animal breeding programs. Current standard methods are purely based on statistical considerations but do not make use of the abundant biological knowledge, which is easily available from public databases. Major questions that have to be answered before biological prior information can be used routinely in GP approaches are which types of information can be used, and at which points they can be incorporated into prediction methods. In this study, we propose a novel strategy to incorporate gene annotation into GP of complex phenotypes by defining haploblocks according to gene positions. Haplotype effects are then modeled as categorical or as numerical allele dosage variables. The underlying concept of this approach is to build the statistical model on variables representing the biologically functional units. We evaluate the new methods with data from a heterogeneous stock mouse population, the Drosophila Genetic Reference Panel (DGRP), and a rice breeding population from the Rice Diversity Panel. Our results show that using gene annotation to define haploblocks often leads to a comparable, but for some traits to a higher, predictive ability compared to SNP-based models or to haplotype models that do not use gene annotation information. Modeling gene interaction effects can further improve predictive ability. We also illustrate that the additional use of markers that have not been mapped to any gene in a second separate relatedness matrix does in many cases not lead to a relevant additional increase in predictive ability when the first matrix is based on haploblocks defined with gene annotation data, suggesting that intergenic markers only provide redundant information on the considered data sets. Therefore, gene annotation information seems to be appropriate to perceive the importance of DNA segments. Finally, we discuss the effects of gene annotation quality, marker density, and linkage disequilibrium on the performance of the new methods. To our knowledge, this is the first work that incorporates epistatic interaction or gene annotation into haplotype-based prediction approaches.
Project description:BackgroundEscherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular) proteins consist of two or more components (modules) encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes.ResultsMultimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused) proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes.ConclusionThe deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes it possible to generate protein groups related by both sequence and function, avoiding mixing of unrelated sequences. Organisms differ in sizes of groups of sequence-related proteins. A sample comparison of orthologs to selected E. coli paralogous groups correlates with known physiological and taxonomic relationships between the organisms.
Project description:BackgroundNon-sequence gene data (images, literature, etc.) can be found in many different public databases. Access to these data is mostly by text based methods using gene names; however, gene annotation is neither complete, nor fully systematic between organisms, and is also not generally stable over time. This provides some challenges for text based access, especially for cross-species searches. We propose a method for non-sequence data retrieval based on sequence similarity, which removes dependence on annotation and text searches. This work was motivated by the need to provide better access to large numbers of in situ images, and the observation that such image data were usually associated with a specific gene sequence. Sequence similarity searches are found in existing gene oriented databases, but mostly give indirect access to non-sequence data via navigational links.ResultsThree applications were built to explore the proposed method: accessing image data, literature and gene names. Searches are initiated with the sequence of the user's gene of interest, which is searched against a database of sequences associated with the target data. The matching (non-sequence) target data are returned directly to the user's browser, organised by sequence similarity. The method worked well for the intended application in image data management. Comparison with text based searches of the image data set showed the accuracy of the method. Applied to literature searches it facilitated retrieval of mostly high relevance references. Applied to gene name data it provided a useful analysis of name variation of related genes within and between species.ConclusionThis method makes a powerful and useful addition to existing methods for searching gene data based on text retrieval or curated gene lists. In particular the method facilitates cross-species comparisons, and enables the handling of novel or otherwise un-annotated genes. Applications using the method are quick and easy to build, and the data require little maintenance. This approach largely circumvents the need for annotation, which can be a major obstacle to the development of genomic scale data resources.
Project description:Enhanced Disease Susceptibility1 (EDS1) is a nucleo-cytoplasmic protein, known to be a key regulator of plant basal defense and effector-triggered immunity. Sequence of a single copy brinjal EDS1 gene (SmEDS1) was mined from draft brinjal genome assembly. The extracted sequence was found to be incomplete and polished with the help of transcriptome sequence data. Full-length SmEDS1 gene is 4.5kb long having three exons that coded for 1.8kb mRNA. SmEDS1 protein is a 602 amino acid long protein consisting of Lipase3 and EP domain regions. Predicted tertiary structure of SmEDS1 using homology modelling had a mass of 68.8kD and was made of 10 strands, 26 alpha helices, five 310 helices and 43 beta turns. Phylogenetic analysis based on protein sequence grouped the species in clades defined by botanical family suggesting that EDS1 protein has evolved through the speciation process. Phylogenetic tree based on EDS1 structures grouped Solanum species of American origin (tomato, wild tomato and potato) together but brinjal EDS1 (Asiatic origin) occupied a unique position. In silico information generated in this study is expected to be the first step toward cloning and expression analysis of SmEDS1 gene.