Methionine changes in bacteriorhodopsin detected by FTIR and cell-free selenomethionine substitution.
Ontology highlight
ABSTRACT: Bacteriorhodopsin (BR) is an integral membrane protein, which functions as a light-driven proton pump in Halobacterium salinarum. We report evidence that one or more methionine residues undergo a structural change during the BR-->M portion of the BR photocycle. Selenomethionine was incorporated into BR using a cell-free protein translation system containing an amino acid mixture with selenomethionine substituted for methionine. BR-->M FTIR difference spectra recorded for unlabeled and selenomethionine-labeled cell-free expressed BR closely resemble the spectra of in vivo expressed BR. However, reproducible changes occur in two regions near 1,284 and 900 cm(-1) due to selenomethionine incorporation. Isotope labeled tyrosine was also co-incorporated with selenomethionine in order to confirm these assignments. Based on recent x-ray crystallographic studies, likely methionines which give rise to the FTIR difference bands are Met-118 and Met-145, which are located inside the retinal binding pocket and in a position to constrain the motion of retinal during photoisomerization. The assignment of methionine bands in the FTIR difference spectrum of BR provides a means to study methionine-chromophore interaction under physiological conditions. More generally, combining cell-free incorporations of selenomethionine into proteins with FTIR difference spectroscopy provides a useful method for investigating the role of methionines in protein structure and function.
SUBMITTER: Bergo V
PROVIDER: S-EPMC1302673 | biostudies-literature | 2003 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA