Block by extracellular divalent cations of Drosophila big brain channels expressed in Xenopus oocytes.
Ontology highlight
ABSTRACT: Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca(2+) and Ba(2+) but not by Mg(2+) in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu(274)) and aspartate (Asp(253)) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu(71)) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu(71) to Asp introduced a new sensitivity to block by extracellular Mg(2+); substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca(2+), suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination.
SUBMITTER: Yanochko GM
PROVIDER: S-EPMC1303982 | biostudies-literature | 2004 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA