Genetic similarity of flag shoot and ascospore subpopulations of Erysiphe necator in Italy.
Ontology highlight
ABSTRACT: The overwintering mode of the grape powdery mildew fungus, Erysiphe necator (syn. Uncinula necator), as mycelium in dormant buds (resulting in symptoms known as flag shoots) or as ascospores in cleistothecia, affects the temporal dynamics of epidemics early in the growing season. We tested whether distinct genetic groups (I and III) identified previously in E. necator correlate to overwintering modes in two vineyards in Tuscany, Italy, to determine whether diagnostic genetic markers could be used to predict overwintering. Samples from one vineyard were collected from flag shoots; the other vineyard, 60 km away, had no flag shoots, and mildew colonies were assumed to be derived from ascospores. Genetic markers putatively diagnostic for groups I and III showed that both types were common in the flag shoot subpopulation. Both genetic types were found in the ascospore population, although group III was dominant. We did not find strong genetic differentiation between the two subpopulations based on inter-simple sequence repeat markers. Although there was significant (P < 0.001) genetic differentiation between these subpopulations in 1997 and when 1997 and 1998 subpopulations were pooled (theta = 0.214 and 0.150, respectively), no differentiation was evident between vineyards in 1998 (theta = 0.138, P = 0.872). Moreover, we did not observe distinct lineages corresponding to overwintering modes, as observed in previous studies. We could not determine if differentiation resulted from biological differences or restricted gene flow between the two vineyards. Our samples were taken from both subpopulations early in the epidemic, while previous studies confounded overwintering mode and sampling time. These results do not support a strong correlation between overwintering and genetic groups, highlighting the need to base population biology studies on sound biological and epidemiological knowledge.
SUBMITTER: Cortesi P
PROVIDER: S-EPMC1317322 | biostudies-literature | 2005 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA